# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Any, List, Optional import torch from torch.nn import DataParallel, Module import pytorch_lightning as pl from pytorch_lightning.overrides.data_parallel import LightningParallelModule from pytorch_lightning.plugins.io.checkpoint_plugin import CheckpointIO from pytorch_lightning.plugins.precision import PrecisionPlugin from pytorch_lightning.strategies.parallel import ParallelStrategy from pytorch_lightning.utilities.apply_func import apply_to_collection, move_data_to_device from pytorch_lightning.utilities.enums import _StrategyType from pytorch_lightning.utilities.model_helpers import is_overridden from pytorch_lightning.utilities.types import _METRIC_COLLECTION, STEP_OUTPUT class DataParallelStrategy(ParallelStrategy): """Implements data-parallel training in a single process, i.e., the model gets replicated to each device and each gets a split of the data.""" distributed_backend = _StrategyType.DP def __init__( self, accelerator: Optional["pl.accelerators.accelerator.Accelerator"] = None, parallel_devices: Optional[List[torch.device]] = None, checkpoint_io: Optional[CheckpointIO] = None, precision_plugin: Optional[PrecisionPlugin] = None, ): super().__init__( accelerator=accelerator, parallel_devices=parallel_devices, cluster_environment=None, checkpoint_io=checkpoint_io, precision_plugin=precision_plugin, ) @property def global_rank(self) -> int: return 0 @property def local_rank(self) -> int: return 0 @property def node_rank(self) -> int: return 0 @property def world_size(self) -> int: return 1 def setup(self, trainer: "pl.Trainer") -> None: # model needs to be moved to the device before it is wrapped self.model_to_device() self.model = self._setup_model(LightningParallelModule(self.model)) super().setup(trainer) def batch_to_device(self, batch: Any, device: Optional[torch.device] = None, dataloader_idx: int = 0) -> Any: """Moves the batch to the correct device. The input and the output is the same type. Args: batch: The batch of samples to move to the correct device device: The target device dataloader_idx: The index of the dataloader to which the batch belongs. """ return move_data_to_device(batch, device=device or self.root_device) def _setup_model(self, model: Module) -> DataParallel: """Wraps the given model into a :class:`~torch.nn.parallel.DataParallel` module.""" return DataParallel(module=model, device_ids=self.parallel_devices) def reduce(self, collection: _METRIC_COLLECTION, *args, **kwargs) -> _METRIC_COLLECTION: """Reduces a collection of tensors from all processes. It can be applied to just a single tensor. Args: collection: The collection of tensors to sync and reduce. *args: ignored for DP **kwargs: ignored for DP Return: Reduced tensor values or the same value if it was not or did not contain a tensor. """ def mean(t: torch.Tensor) -> torch.Tensor: original_dtype = t.dtype return t.float().mean().to(original_dtype) return apply_to_collection(collection, torch.Tensor, mean) @property def root_device(self): return self.parallel_devices[0] def model_to_device(self) -> None: self.model.to(self.root_device) def barrier(self, *args, **kwargs): pass def broadcast(self, obj: object, src: int = 0) -> object: return obj def reduce_boolean_decision(self, decision: bool) -> bool: return decision def training_step(self, *args, **kwargs) -> STEP_OUTPUT: with self.precision_plugin.train_step_context(): return self.model(*args, **kwargs) def validation_step(self, *args, **kwargs) -> Optional[STEP_OUTPUT]: with self.precision_plugin.val_step_context(): return self.model(*args, **kwargs) def test_step(self, *args, **kwargs) -> Optional[STEP_OUTPUT]: with self.precision_plugin.test_step_context(): return self.model(*args, **kwargs) def predict_step(self, *args, **kwargs) -> STEP_OUTPUT: with self.precision_plugin.predict_step_context(): return self.model(*args, **kwargs) def training_step_end(self, output): if not is_overridden("training_step_end", self.lightning_module): return self.reduce(output) return output def validation_step_end(self, output): if not is_overridden("validation_step_end", self.lightning_module): return self.reduce(output) return output def test_step_end(self, output): if not is_overridden("test_step_end", self.lightning_module): return self.reduce(output) return output def teardown(self) -> None: super().teardown() if self.on_gpu: # GPU teardown self.lightning_module.cpu() # clean up memory torch.cuda.empty_cache()