# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from collections import OrderedDict from typing import Any, Dict, Iterator, List, Optional, Union from deprecate import void from torch import Tensor from pytorch_lightning.loops.base import Loop from pytorch_lightning.trainer.connectors.logger_connector.result import ResultCollection from pytorch_lightning.trainer.supporters import PredictionCollection from pytorch_lightning.utilities.memory import recursive_detach from pytorch_lightning.utilities.types import STEP_OUTPUT class EvaluationEpochLoop(Loop): """ This is the loop performing the evaluation. It mainly loops over the given dataloader and runs the validation or test step (depending on the trainer's current state). """ def __init__(self) -> None: super().__init__() self.predictions: Optional[PredictionCollection] = None self.dataloader: Optional[Iterator] = None self.dl_max_batches: Optional[int] = None self.dataloader_idx: Optional[int] = None self.num_dataloaders: Optional[int] = None self.outputs: List[STEP_OUTPUT] = [] @property def done(self) -> bool: """Returns ``True`` if the current iteration count reaches the number of dataloader batches.""" return self.iteration_count >= self.dl_max_batches def reset(self) -> None: """Resets the loop's internal state.""" self.iteration_count = 0 self.predictions = PredictionCollection(self.trainer.global_rank, self.trainer.world_size) self.dl_max_batches = None self.dataloader_idx = None self.num_dataloaders = None self.outputs = [] def on_run_start( self, dataloader_iter: Iterator, dataloader_idx: int, dl_max_batches: int, num_dataloaders: int, ) -> None: """Adds the passed arguments to the loop's state if necessary Args: dataloader_iter: iterator over the dataloader dataloader_idx: index of the current dataloader dl_max_batches: maximum number of batches the dataloader can produce num_dataloaders: the total number of dataloaders """ void(dataloader_iter) self.dl_max_batches = dl_max_batches self.dataloader_idx = dataloader_idx self.num_dataloaders = num_dataloaders def advance( self, dataloader_iter: Iterator, dataloader_idx: int, dl_max_batches: int, num_dataloaders: int, ) -> None: """Calls the evaluation step with the corresponding hooks and updates the logger connector. Args: dataloader_iter: iterator over the dataloader dataloader_idx: index of the current dataloader dl_max_batches: maximum number of batches the dataloader can produce num_dataloaders: the total number of dataloaders Raises: StopIteration: If the current batch is None """ void(dl_max_batches, num_dataloaders) batch_idx, batch = next(dataloader_iter) if batch is None: raise StopIteration # hook self.on_evaluation_batch_start(batch, batch_idx, dataloader_idx) # lightning module methods with self.trainer.profiler.profile("evaluation_step_and_end"): output = self.evaluation_step(batch, batch_idx, dataloader_idx) output = self.evaluation_step_end(output) # hook + store predictions self.on_evaluation_batch_end(output, batch, batch_idx, dataloader_idx) # log batch metrics self.trainer.logger_connector.update_eval_step_metrics() # track epoch level outputs self.outputs = self._track_output_for_epoch_end(self.outputs, output) def on_run_end(self) -> List[STEP_OUTPUT]: """Returns the outputs of the whole run""" return self.outputs def teardown(self) -> None: """Frees memory of tracked outputs""" self.outputs = [] def evaluation_step(self, batch: Any, batch_idx: int, dataloader_idx: int) -> Optional[STEP_OUTPUT]: """The evaluation step (validation_step or test_step depending on the trainer's state). Args: batch: The current batch to run through the step. batch_idx: The index of the current batch dataloader_idx: the index of the dataloader producing the current batch Returns: the outputs of the step """ # configure step_kwargs step_kwargs = self._build_kwargs(batch, batch_idx, dataloader_idx) if self.trainer.testing: self.trainer.lightning_module._current_fx_name = "test_step" with self.trainer.profiler.profile("test_step"): output = self.trainer.accelerator.test_step(step_kwargs) else: self.trainer.lightning_module._current_fx_name = "validation_step" with self.trainer.profiler.profile("validation_step"): output = self.trainer.accelerator.validation_step(step_kwargs) return output def evaluation_step_end(self, *args: Any, **kwargs: Any) -> Optional[STEP_OUTPUT]: """Calls the `{validation/test}_step_end` hook""" hook_name = "test_step_end" if self.trainer.testing else "validation_step_end" output = self.trainer.call_hook(hook_name, *args, **kwargs) return output def on_evaluation_batch_start(self, batch: Any, batch_idx: int, dataloader_idx: int) -> None: """Calls the ``on_{validation/test}_batch_start`` hook. Args: batch: The current batch to run through the step batch_idx: The index of the current batch dataloader_idx: The index of the dataloader producing the current batch Raises: AssertionError: If the number of dataloaders is None (has not yet been set). """ self.trainer.logger_connector.on_batch_start() assert self.num_dataloaders is not None self.trainer.logger_connector.on_evaluation_batch_start(batch, batch_idx, dataloader_idx, self.num_dataloaders) if self.trainer.testing: self.trainer.call_hook("on_test_batch_start", batch, batch_idx, dataloader_idx) else: self.trainer.call_hook("on_validation_batch_start", batch, batch_idx, dataloader_idx) def on_evaluation_batch_end( self, output: Optional[STEP_OUTPUT], batch: Any, batch_idx: int, dataloader_idx: int, ) -> None: """The ``on_{validation/test}_batch_end`` hook. Args: output: The output of the performed step batch: The input batch for the step batch_idx: The index of the current batch dataloader_idx: Index of the dataloader producing the current batch """ hook_name = "on_test_batch_end" if self.trainer.testing else "on_validation_batch_end" self.trainer.call_hook(hook_name, output, batch, batch_idx, dataloader_idx) self.trainer.logger_connector.on_batch_end() # store predicitons if do_write_predictions and track eval loss history self.store_predictions(output, batch_idx, dataloader_idx) def store_predictions(self, output: Optional[STEP_OUTPUT], batch_idx: int, dataloader_idx: int) -> None: """Stores the predictions in the prediction collection (only if running in test mode) Args: output: the outputs of the current step batch_idx: the index of the current batch dataloader_idx: the index of the dataloader producing the current batch """ # Add step predictions to prediction collection to write later if output is not None and self.predictions is not None: if isinstance(output, ResultCollection) and self.trainer.testing: self.predictions.add(output.pop("predictions", None)) # track debug metrics self.trainer.dev_debugger.track_eval_loss_history(batch_idx, dataloader_idx, output) def _build_kwargs(self, batch: Any, batch_idx: int, dataloader_idx: int) -> Dict[str, Union[Any, int]]: """Helper function to build the arguments for the current step Args: batch: The current batch to run through the step batch_idx: the index of the current batch dataloader_idx: the index of the dataloader producing the current batch Returns: the keyword arguments to pass to the step function """ # make dataloader_idx arg in validation_step optional step_kwargs = OrderedDict([("batch", batch), ("batch_idx", batch_idx)]) multiple_val_loaders = not self.trainer.testing and self.num_dataloaders > 1 multiple_test_loaders = self.trainer.testing and self.num_dataloaders > 1 if multiple_test_loaders or multiple_val_loaders: step_kwargs["dataloader_idx"] = dataloader_idx return step_kwargs def _track_output_for_epoch_end( self, outputs: List[Union[ResultCollection, Dict, Tensor]], output: Optional[Union[ResultCollection, Dict, Tensor]], ) -> List[Union[ResultCollection, Dict, Tensor]]: if output is not None: if isinstance(output, ResultCollection): output = output.detach() if self.trainer.move_metrics_to_cpu: output = output.cpu() elif isinstance(output, dict): output = recursive_detach(output, to_cpu=self.trainer.move_metrics_to_cpu) elif isinstance(output, Tensor) and output.is_cuda and self.trainer.move_metrics_to_cpu: output = output.cpu() outputs.append(output) return outputs