import time import numpy as np import pytest import torch import tests.base.utils as tutils from benchmarks.parity_modules import ParityModuleRNN, ParityModuleMNIST from pytorch_lightning import Trainer, seed_everything @pytest.mark.parametrize('cls_model,max_diff', [ (ParityModuleRNN, 0.05), (ParityModuleMNIST, 0.5) ]) @pytest.mark.skipif(not torch.cuda.is_available(), reason="test requires GPU machine") def test_pytorch_parity(tmpdir, cls_model, max_diff): """ Verify that the same pytorch and lightning models achieve the same results """ num_epochs = 4 num_rums = 3 lightning_outs, pl_times = lightning_loop(cls_model, num_rums, num_epochs) manual_outs, pt_times = vanilla_loop(cls_model, num_rums, num_epochs) # make sure the losses match exactly to 5 decimal places for pl_out, pt_out in zip(lightning_outs, manual_outs): np.testing.assert_almost_equal(pl_out, pt_out, 5) # the fist run initialize dataset (download & filter) tutils.assert_speed_parity_absolute(pl_times[1:], pt_times[1:], nb_epochs=num_epochs, max_diff=max_diff) def vanilla_loop(cls_model, num_runs=10, num_epochs=10): """ Returns an array with the last loss from each epoch for each run """ device = torch.device('cuda' if torch.cuda.is_available() else "cpu") errors = [] times = [] torch.backends.cudnn.deterministic = True for i in range(num_runs): time_start = time.perf_counter() # set seed seed = i seed_everything(seed) # init model parts model = cls_model() dl = model.train_dataloader() optimizer = model.configure_optimizers() # model to GPU model = model.to(device) epoch_losses = [] # as the first run is skipped, no need to run it long for epoch in range(num_epochs if i > 0 else 1): # run through full training set for j, batch in enumerate(dl): batch = [x.to(device) for x in batch] loss_dict = model.training_step(batch, j) loss = loss_dict['loss'] loss.backward() optimizer.step() optimizer.zero_grad() # track last epoch loss epoch_losses.append(loss.item()) time_end = time.perf_counter() times.append(time_end - time_start) errors.append(epoch_losses[-1]) return errors, times def lightning_loop(cls_model, num_runs=10, num_epochs=10): errors = [] times = [] for i in range(num_runs): time_start = time.perf_counter() # set seed seed = i seed_everything(seed) model = cls_model() # init model parts trainer = Trainer( # as the first run is skipped, no need to run it long max_epochs=num_epochs if i > 0 else 1, progress_bar_refresh_rate=0, weights_summary=None, gpus=1, early_stop_callback=False, checkpoint_callback=False, deterministic=True, logger=False, replace_sampler_ddp=False, ) trainer.fit(model) final_loss = trainer.running_loss.last().item() errors.append(final_loss) time_end = time.perf_counter() times.append(time_end - time_start) return errors, times