# Copyright The Lightning AI team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import signal import sys import threading from functools import partial from http.server import SimpleHTTPRequestHandler from pathlib import Path from typing import List from unittest.mock import Mock import lightning.fabric import lightning.pytorch import pytest import torch.distributed from lightning.fabric.plugins.environments.lightning import find_free_network_port from lightning.fabric.strategies.launchers.subprocess_script import _ChildProcessObserver from lightning.fabric.utilities.distributed import _distributed_is_initialized from lightning.fabric.utilities.imports import _IS_WINDOWS from lightning.pytorch.trainer.connectors.signal_connector import _SignalConnector from tests_pytorch import _PATH_DATASETS if sys.version_info >= (3, 9): from concurrent.futures.process import _ExecutorManagerThread @pytest.fixture(scope="session") def datadir(): return Path(_PATH_DATASETS) @pytest.fixture(autouse=True) def preserve_global_rank_variable(): """Ensures that the rank_zero_only.rank global variable gets reset in each test.""" from lightning.fabric.utilities.rank_zero import rank_zero_only as rank_zero_only_fabric from lightning.pytorch.utilities.rank_zero import rank_zero_only as rank_zero_only_pytorch from lightning_utilities.core.rank_zero import rank_zero_only as rank_zero_only_utilities functions = (rank_zero_only_pytorch, rank_zero_only_fabric, rank_zero_only_utilities) ranks = [getattr(fn, "rank", None) for fn in functions] yield for fn, rank in zip(functions, ranks): if rank is not None: setattr(fn, "rank", rank) @pytest.fixture(autouse=True) def restore_env_variables(): """Ensures that environment variables set during the test do not leak out.""" env_backup = os.environ.copy() yield leaked_vars = os.environ.keys() - env_backup.keys() # restore environment as it was before running the test os.environ.clear() os.environ.update(env_backup) # these are currently known leakers - ideally these would not be allowed allowlist = { "CUBLAS_WORKSPACE_CONFIG", # enabled with deterministic flag "CUDA_DEVICE_ORDER", "LOCAL_RANK", "NODE_RANK", "WORLD_SIZE", "MASTER_ADDR", "MASTER_PORT", "PL_GLOBAL_SEED", "PL_SEED_WORKERS", "WANDB_MODE", "WANDB_REQUIRE_SERVICE", "WANDB_SERVICE", "RANK", # set by DeepSpeed "POPLAR_ENGINE_OPTIONS", # set by IPUStrategy "CUDA_MODULE_LOADING", # leaked since PyTorch 1.13 "KMP_INIT_AT_FORK", # leaked since PyTorch 1.13 "KMP_DUPLICATE_LIB_OK", # leaked since PyTorch 1.13 "CRC32C_SW_MODE", # leaked by tensorboardX "TRITON_CACHE_DIR", # leaked by torch.compile "OMP_NUM_THREADS", # set by our launchers # leaked by XLA "ALLOW_MULTIPLE_LIBTPU_LOAD", "GRPC_VERBOSITY", "TF_CPP_MIN_LOG_LEVEL", "TF_GRPC_DEFAULT_OPTIONS", "XLA_FLAGS", } leaked_vars.difference_update(allowlist) assert not leaked_vars, f"test is leaking environment variable(s): {set(leaked_vars)}" @pytest.fixture(autouse=True) def restore_signal_handlers(): """Ensures that signal handlers get restored before the next test runs. This is a safety net for tests that don't run Trainer's teardown. """ valid_signals = _SignalConnector._valid_signals() if not _IS_WINDOWS: # SIGKILL and SIGSTOP are not allowed to be modified by the user valid_signals -= {signal.SIGKILL, signal.SIGSTOP} handlers = {signum: signal.getsignal(signum) for signum in valid_signals} yield for signum, handler in handlers.items(): if handler is not None: signal.signal(signum, handler) @pytest.fixture(autouse=True) def teardown_process_group(): """Ensures that the distributed process group gets closed before the next test runs.""" yield if _distributed_is_initialized(): torch.distributed.destroy_process_group() @pytest.fixture(autouse=True) def reset_deterministic_algorithm(): """Ensures that torch determinism settings are reset before the next test runs.""" yield torch.use_deterministic_algorithms(False) @pytest.fixture(autouse=True) def thread_police_duuu_daaa_duuu_daaa(): """Attempts to stop left-over threads to avoid test interactions.""" active_threads_before = set(threading.enumerate()) yield active_threads_after = set(threading.enumerate()) for thread in active_threads_after - active_threads_before: stop = getattr(thread, "stop", None) or getattr(thread, "exit", None) if thread.daemon and callable(stop): # A daemon thread would anyway be stopped at the end of a program # We do it preemptively here to reduce the risk of interactions with other tests that run after stop() assert not thread.is_alive() elif isinstance(thread, _ChildProcessObserver): thread.join(timeout=10) elif thread.name == "QueueFeederThread": # tensorboardX thread.join(timeout=20) elif ( sys.version_info >= (3, 9) and isinstance(thread, _ExecutorManagerThread) or "ThreadPoolExecutor-" in thread.name ): # probably `torch.compile`, can't narrow it down further continue elif thread.name == "fsspecIO": continue else: raise AssertionError(f"Test left zombie thread: {thread}") def mock_cuda_count(monkeypatch, n: int) -> None: monkeypatch.setattr(lightning.fabric.accelerators.cuda, "num_cuda_devices", lambda: n) monkeypatch.setattr(lightning.pytorch.accelerators.cuda, "num_cuda_devices", lambda: n) @pytest.fixture() def cuda_count_0(monkeypatch): mock_cuda_count(monkeypatch, 0) @pytest.fixture() def cuda_count_1(monkeypatch): mock_cuda_count(monkeypatch, 1) @pytest.fixture() def cuda_count_2(monkeypatch): mock_cuda_count(monkeypatch, 2) @pytest.fixture() def cuda_count_4(monkeypatch): mock_cuda_count(monkeypatch, 4) def mock_mps_count(monkeypatch, n: int) -> None: monkeypatch.setattr(lightning.fabric.accelerators.mps, "_get_all_available_mps_gpus", lambda: [0] if n > 0 else []) monkeypatch.setattr(lightning.fabric.accelerators.mps.MPSAccelerator, "is_available", lambda *_: n > 0) @pytest.fixture() def mps_count_0(monkeypatch): mock_mps_count(monkeypatch, 0) @pytest.fixture() def mps_count_1(monkeypatch): mock_mps_count(monkeypatch, 1) def mock_xla_available(monkeypatch: pytest.MonkeyPatch, value: bool = True) -> None: monkeypatch.setattr(lightning.pytorch.strategies.xla, "_XLA_AVAILABLE", value) monkeypatch.setattr(lightning.pytorch.strategies.single_xla, "_XLA_AVAILABLE", value) monkeypatch.setattr(lightning.pytorch.plugins.precision.xla, "_XLA_AVAILABLE", value) monkeypatch.setattr(lightning.pytorch.strategies.launchers.xla, "_XLA_AVAILABLE", value) monkeypatch.setattr(lightning.fabric.accelerators.xla, "_XLA_AVAILABLE", value) monkeypatch.setattr(lightning.fabric.plugins.environments.xla, "_XLA_AVAILABLE", value) monkeypatch.setattr(lightning.fabric.plugins.io.xla, "_XLA_AVAILABLE", value) monkeypatch.setattr(lightning.fabric.strategies.launchers.xla, "_XLA_AVAILABLE", value) @pytest.fixture() def xla_available(monkeypatch: pytest.MonkeyPatch) -> None: mock_xla_available(monkeypatch) def mock_tpu_available(monkeypatch: pytest.MonkeyPatch, value: bool = True) -> None: mock_xla_available(monkeypatch, value) monkeypatch.setattr(lightning.pytorch.accelerators.xla.XLAAccelerator, "is_available", lambda: value) monkeypatch.setattr(lightning.fabric.accelerators.xla.XLAAccelerator, "is_available", lambda: value) monkeypatch.setattr(lightning.pytorch.accelerators.xla.XLAAccelerator, "auto_device_count", lambda *_: 8) monkeypatch.setattr(lightning.fabric.accelerators.xla.XLAAccelerator, "auto_device_count", lambda *_: 8) monkeypatch.setitem(sys.modules, "torch_xla", Mock()) monkeypatch.setitem(sys.modules, "torch_xla.core.xla_model", Mock()) monkeypatch.setitem(sys.modules, "torch_xla.experimental", Mock()) @pytest.fixture() def tpu_available(monkeypatch) -> None: mock_tpu_available(monkeypatch) @pytest.fixture() def caplog(caplog): """Workaround for https://github.com/pytest-dev/pytest/issues/3697. Setting ``filterwarnings`` with pytest breaks ``caplog`` when ``not logger.propagate``. """ import logging root_logger = logging.getLogger() root_propagate = root_logger.propagate root_logger.propagate = True propagation_dict = { name: logging.getLogger(name).propagate for name in logging.root.manager.loggerDict if name.startswith("lightning.pytorch") } for name in propagation_dict: logging.getLogger(name).propagate = True yield caplog root_logger.propagate = root_propagate for name, propagate in propagation_dict.items(): logging.getLogger(name).propagate = propagate @pytest.fixture() def tmpdir_server(tmpdir): Handler = partial(SimpleHTTPRequestHandler, directory=str(tmpdir)) from http.server import ThreadingHTTPServer with ThreadingHTTPServer(("localhost", 0), Handler) as server: server_thread = threading.Thread(target=server.serve_forever) # Exit the server thread when the main thread terminates server_thread.daemon = True server_thread.start() yield server.server_address server.shutdown() @pytest.fixture() def single_process_pg(): """Initialize the default process group with only the current process for testing purposes. The process group is destroyed when the with block is exited. """ if _distributed_is_initialized(): raise RuntimeError("Can't use `single_process_pg` when the default process group is already initialized.") orig_environ = os.environ.copy() os.environ["MASTER_ADDR"] = "localhost" os.environ["MASTER_PORT"] = str(find_free_network_port()) os.environ["RANK"] = "0" os.environ["WORLD_SIZE"] = "1" torch.distributed.init_process_group("gloo") try: yield finally: torch.distributed.destroy_process_group() os.environ.clear() os.environ.update(orig_environ) def pytest_collection_modifyitems(items: List[pytest.Function], config: pytest.Config) -> None: initial_size = len(items) conditions = [] filtered, skipped = 0, 0 options = { "standalone": "PL_RUN_STANDALONE_TESTS", "min_cuda_gpus": "PL_RUN_CUDA_TESTS", "tpu": "PL_RUN_TPU_TESTS", } if os.getenv(options["standalone"], "0") == "1" and os.getenv(options["min_cuda_gpus"], "0") == "1": # special case: we don't have a CPU job for standalone tests, so we shouldn't run only cuda tests. # by deleting the key, we avoid filtering out the CPU tests del options["min_cuda_gpus"] for kwarg, env_var in options.items(): # this will compute the intersection of all tests selected per environment variable if os.getenv(env_var, "0") == "1": conditions.append(env_var) for i, test in reversed(list(enumerate(items))): # loop in reverse, since we are going to pop items already_skipped = any(marker.name == "skip" for marker in test.own_markers) if already_skipped: # the test was going to be skipped anyway, filter it out items.pop(i) skipped += 1 continue has_runif_with_kwarg = any( marker.name == "skipif" and marker.kwargs.get(kwarg) for marker in test.own_markers ) if not has_runif_with_kwarg: # the test has `@RunIf(kwarg=True)`, filter it out items.pop(i) filtered += 1 if config.option.verbose >= 0 and (filtered or skipped): writer = config.get_terminal_writer() writer.write( f"\nThe number of tests has been filtered from {initial_size} to {initial_size - filtered} after the" f" filters {conditions}.\n{skipped} tests are marked as unconditional skips.\nIn total, {len(items)} tests" " will run.\n", flush=True, bold=True, purple=True, # oh yeah, branded pytest messages ) # error out on our deprecation warnings - ensures the code and tests are kept up-to-date deprecation_error = pytest.mark.filterwarnings( "error::lightning.fabric.utilities.rank_zero.LightningDeprecationWarning", ) for item in items: item.add_marker(deprecation_error)