# Copyright The Lightning AI team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import torch from lightning.pytorch import Trainer from lightning.pytorch.demos.boring_classes import BoringModel from tests_pytorch.helpers.runif import RunIf def test_model_torch_save(tmpdir): """Test to ensure torch save does not fail for model and trainer.""" model = BoringModel() num_epochs = 1 trainer = Trainer(default_root_dir=tmpdir, max_epochs=num_epochs) temp_path = os.path.join(tmpdir, "temp.pt") trainer.fit(model) # Ensure these do not fail torch.save(trainer.model, temp_path) torch.save(trainer, temp_path) trainer = torch.load(temp_path) @RunIf(skip_windows=True) def test_model_torch_save_ddp_cpu(tmpdir): """Test to ensure torch save does not fail for model and trainer using cpu ddp.""" model = BoringModel() num_epochs = 1 trainer = Trainer( default_root_dir=tmpdir, max_epochs=num_epochs, strategy="ddp_spawn", accelerator="cpu", devices=2, logger=False ) temp_path = os.path.join(tmpdir, "temp.pt") trainer.fit(model) # Ensure these do not fail torch.save(trainer.model, temp_path) torch.save(trainer, temp_path) @RunIf(min_cuda_gpus=2) def test_model_torch_save_ddp_cuda(tmpdir): """Test to ensure torch save does not fail for model and trainer using gpu ddp.""" model = BoringModel() num_epochs = 1 trainer = Trainer( default_root_dir=tmpdir, max_epochs=num_epochs, strategy="ddp_spawn", accelerator="gpu", devices=2 ) temp_path = os.path.join(tmpdir, "temp.pt") trainer.fit(model) # Ensure these do not fail torch.save(trainer.model, temp_path) torch.save(trainer, temp_path)