# Copyright The Lightning AI team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import List, Union from lightning.pytorch import Trainer from lightning.pytorch.callbacks import ModelSummary from lightning.pytorch.demos.boring_classes import BoringModel def test_model_summary_callback_present_trainer(): trainer = Trainer() assert any(isinstance(cb, ModelSummary) for cb in trainer.callbacks) trainer = Trainer(callbacks=ModelSummary()) assert any(isinstance(cb, ModelSummary) for cb in trainer.callbacks) def test_model_summary_callback_with_enable_model_summary_false(): trainer = Trainer(enable_model_summary=False) assert not any(isinstance(cb, ModelSummary) for cb in trainer.callbacks) def test_model_summary_callback_with_enable_model_summary_true(): trainer = Trainer(enable_model_summary=True) assert any(isinstance(cb, ModelSummary) for cb in trainer.callbacks) # Default value of max_depth is set as 1, when enable_model_summary is True # and ModelSummary is not passed in callbacks list model_summary_callback = list(filter(lambda cb: isinstance(cb, ModelSummary), trainer.callbacks))[0] assert model_summary_callback._max_depth == 1 def test_custom_model_summary_callback_summarize(tmpdir): class CustomModelSummary(ModelSummary): @staticmethod def summarize( summary_data: List[List[Union[str, List[str]]]], total_parameters: int, trainable_parameters: int, model_size: float, ) -> None: assert summary_data[1][0] == "Name" assert summary_data[1][1][0] == "layer" assert summary_data[2][0] == "Type" assert summary_data[2][1][0] == "Linear" assert summary_data[3][0] == "Params" assert total_parameters == 66 assert trainable_parameters == 66 model = BoringModel() trainer = Trainer(default_root_dir=tmpdir, callbacks=CustomModelSummary(), max_steps=1) trainer.fit(model)