# Copyright The Lightning AI team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from pathlib import Path from re import escape from unittest.mock import Mock import pytest from lightning.pytorch import Callback, Trainer from lightning.pytorch.callbacks import ModelCheckpoint from lightning.pytorch.demos.boring_classes import BoringModel from lightning_utilities.test.warning import no_warning_call def test_callbacks_configured_in_model(tmpdir): """Test the callback system with callbacks added through the model hook.""" model_callback_mock = Mock(spec=Callback, model=Callback()) trainer_callback_mock = Mock(spec=Callback, model=Callback()) class TestModel(BoringModel): def configure_callbacks(self): return [model_callback_mock] model = TestModel() trainer_options = { "default_root_dir": tmpdir, "enable_checkpointing": False, "fast_dev_run": True, "enable_progress_bar": False, } def assert_expected_calls(_trainer, model_callback, trainer_callback): # assert that the rest of calls are the same as for trainer callbacks expected_calls = [m for m in trainer_callback.method_calls if m] assert expected_calls assert model_callback.method_calls == expected_calls # .fit() trainer_options.update(callbacks=[trainer_callback_mock]) trainer = Trainer(**trainer_options) assert trainer_callback_mock in trainer.callbacks assert model_callback_mock not in trainer.callbacks trainer.fit(model) assert model_callback_mock in trainer.callbacks assert trainer.callbacks[-1] == model_callback_mock assert_expected_calls(trainer, model_callback_mock, trainer_callback_mock) # .test() for fn in ("test", "validate"): model_callback_mock.reset_mock() trainer_callback_mock.reset_mock() trainer_options.update(callbacks=[trainer_callback_mock]) trainer = Trainer(**trainer_options) trainer_fn = getattr(trainer, fn) trainer_fn(model) assert model_callback_mock in trainer.callbacks assert trainer.callbacks[-1] == model_callback_mock assert_expected_calls(trainer, model_callback_mock, trainer_callback_mock) def test_configure_callbacks_hook_multiple_calls(tmpdir): """Test that subsequent calls to `configure_callbacks` do not change the callbacks list.""" model_callback_mock = Mock(spec=Callback, model=Callback()) class TestModel(BoringModel): def configure_callbacks(self): return model_callback_mock model = TestModel() trainer = Trainer(default_root_dir=tmpdir, fast_dev_run=True, enable_checkpointing=False) callbacks_before_fit = trainer.callbacks.copy() assert callbacks_before_fit trainer.fit(model) callbacks_after_fit = trainer.callbacks.copy() assert callbacks_after_fit == callbacks_before_fit + [model_callback_mock] for fn in ("test", "validate"): trainer_fn = getattr(trainer, fn) trainer_fn(model) callbacks_after = trainer.callbacks.copy() assert callbacks_after == callbacks_after_fit trainer_fn(model) callbacks_after = trainer.callbacks.copy() assert callbacks_after == callbacks_after_fit class OldStatefulCallback(Callback): def __init__(self, state): self.state = state @property def state_key(self): return type(self) def state_dict(self): return {"state": self.state} def load_state_dict(self, state_dict) -> None: self.state = state_dict["state"] def test_resume_callback_state_saved_by_type_stateful(tmpdir): """Test that a legacy checkpoint that didn't use a state key before can still be loaded, using state_dict/load_state_dict.""" model = BoringModel() callback = OldStatefulCallback(state=111) trainer = Trainer(default_root_dir=tmpdir, max_steps=1, callbacks=[callback]) trainer.fit(model) ckpt_path = Path(trainer.checkpoint_callback.best_model_path) assert ckpt_path.exists() callback = OldStatefulCallback(state=222) trainer = Trainer(default_root_dir=tmpdir, max_steps=2, callbacks=[callback]) trainer.fit(model, ckpt_path=ckpt_path) assert callback.state == 111 def test_resume_incomplete_callbacks_list_warning(tmpdir): model = BoringModel() callback0 = ModelCheckpoint(monitor="epoch") callback1 = ModelCheckpoint(monitor="global_step") trainer = Trainer( default_root_dir=tmpdir, max_steps=1, callbacks=[callback0, callback1], ) trainer.fit(model) ckpt_path = trainer.checkpoint_callback.best_model_path trainer = Trainer( default_root_dir=tmpdir, max_steps=1, callbacks=[callback1], # one callback is missing! ) with pytest.warns(UserWarning, match=escape(f"Please add the following callbacks: [{repr(callback0.state_key)}]")): trainer.fit(model, ckpt_path=ckpt_path) trainer = Trainer( default_root_dir=tmpdir, max_steps=1, callbacks=[callback1, callback0], # all callbacks here, order switched ) with no_warning_call(UserWarning, match="Please add the following callbacks:"): trainer.fit(model, ckpt_path=ckpt_path)