# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ARG CUDA_VERSION=11.3.1 FROM nvidia/cuda:${CUDA_VERSION}-devel-ubuntu20.04 ARG PYTHON_VERSION=3.9 ARG PYTORCH_VERSION=1.9 ARG CONDA_VERSION=4.11.0 SHELL ["/bin/bash", "-c"] # https://techoverflow.net/2019/05/18/how-to-fix-configuring-tzdata-interactive-input-when-building-docker-images/ ENV \ PATH="$PATH:/root/.local/bin" \ DEBIAN_FRONTEND=noninteractive \ TZ=Europe/Prague \ # CUDA_TOOLKIT_ROOT_DIR="/usr/local/cuda" \ MKL_THREADING_LAYER=GNU RUN \ # TODO: Remove the manual key installation once the base image is updated. # https://github.com/NVIDIA/nvidia-docker/issues/1631 apt-key adv --fetch-keys https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2004/x86_64/3bf863cc.pub && \ apt-get update -qq --fix-missing && \ apt-get install -y --no-install-recommends \ build-essential \ cmake \ git \ wget \ curl \ unzip \ ca-certificates \ libopenmpi-dev \ && \ # Install conda and python. # NOTE new Conda does not forward the exit status... https://github.com/conda/conda/issues/8385 curl -o ~/miniconda.sh https://repo.anaconda.com/miniconda/Miniconda3-py38_${CONDA_VERSION}-Linux-x86_64.sh && \ chmod +x ~/miniconda.sh && \ ~/miniconda.sh -b && \ rm ~/miniconda.sh && \ # Cleaning apt-get autoremove -y && \ apt-get clean && \ rm -rf /root/.cache && \ rm -rf /var/lib/apt/lists/* ENV \ PATH="/root/miniconda3/bin:$PATH" \ LD_LIBRARY_PATH="/root/miniconda3/lib:$LD_LIBRARY_PATH" \ CUDA_TOOLKIT_ROOT_DIR="/usr/local/cuda" \ MKL_THREADING_LAYER=GNU \ # MAKEFLAGS="-j$(nproc)" \ MAKEFLAGS="-j2" \ TORCH_CUDA_ARCH_LIST="3.7;5.0;6.0;7.0;7.5;8.0" \ CONDA_ENV=lightning COPY environment.yml environment.yml # conda init RUN \ conda update -n base -c defaults conda && \ conda create -y --name $CONDA_ENV \ python=${PYTHON_VERSION} pytorch=${PYTORCH_VERSION} torchvision torchtext cudatoolkit=${CUDA_VERSION} \ -c nvidia -c pytorch -c pytorch-test -c pytorch-nightly && \ conda init bash && \ # NOTE: this requires that the channel is presented in the yaml before packages \ printf "import re;\nfname = 'environment.yml';\nreq = open(fname).read();\nfor n in ['python', 'pytorch', 'torchtext', 'torchvision']:\n req = re.sub(rf'- {n}[>=]+', f'# - {n}=', req);\nopen(fname, 'w').write(req)" > prune.py && \ python prune.py && \ rm prune.py && \ cat environment.yml && \ conda env update --name $CONDA_ENV --file environment.yml && \ conda install "Pillow<9.0" && \ conda clean -ya && \ rm environment.yml ENV \ PATH=/root/miniconda3/envs/${CONDA_ENV}/bin:$PATH \ LD_LIBRARY_PATH="/root/miniconda3/envs/${CONDA_ENV}/lib:$LD_LIBRARY_PATH" COPY ./requirements/pytorch/ ./requirements/pytorch/ COPY ./.actions/assistant.py assistant.py RUN \ pip list | grep torch && \ python -c "import torch; print(torch.__version__)" && \ pip install -q fire && \ python assistant.py requirements_prune_pkgs torch,torchvision,torchtext && \ # Install remaining requirements pip install --no-cache-dir -r requirements/pytorch/base.txt \ -r requirements/pytorch/extra.txt \ -r requirements/pytorch/examples.txt && \ rm assistant.py ENV \ # if you want this environment to be the default o \ne, uncomment the following line: CONDA_DEFAULT_ENV=${CONDA_ENV} \ HOROVOD_CUDA_HOME=$CUDA_TOOLKIT_ROOT_DIR \ HOROVOD_GPU_OPERATIONS=NCCL \ HOROVOD_WITH_PYTORCH=1 \ HOROVOD_WITHOUT_TENSORFLOW=1 \ HOROVOD_WITHOUT_MXNET=1 \ HOROVOD_WITH_GLOO=1 \ HOROVOD_WITH_MPI=1 RUN \ HOROVOD_BUILD_CUDA_CC_LIST=${TORCH_CUDA_ARCH_LIST//";"/","} && \ export HOROVOD_BUILD_CUDA_CC_LIST=${HOROVOD_BUILD_CUDA_CC_LIST//"."/""} && \ pip install --no-cache-dir -r requirements/pytorch/strategies.txt RUN \ CUDA_VERSION_MAJOR=$(python -c "import torch ; print(torch.version.cuda.split('.')[0])") && \ py_ver=$(python -c "print(int('$PYTHON_VERSION'.split('.') >= '3.9'.split('.')))") && \ # install DALI, needed for examples # todo: waiting for 1.4 - https://github.com/NVIDIA/DALI/issues/3144#issuecomment-877386691 if [ $py_ver -eq "0" ]; then \ pip install --extra-index-url https://developer.download.nvidia.com/compute/redist "nvidia-dali-cuda${CUDA_VERSION_MAJOR}0>1.0" ; \ python -c 'from nvidia.dali.pipeline import Pipeline' ; \ fi RUN \ # install NVIDIA apex pip install --no-cache-dir --global-option="--cuda_ext" https://github.com/NVIDIA/apex/archive/refs/heads/master.zip && \ python -c "from apex import amp" RUN \ # install Bagua CUDA_VERSION_MM=$(python -c "print(''.join('$CUDA_VERSION'.split('.')[:2]))") && \ pip install "bagua-cuda$CUDA_VERSION_MM==0.9.0" && \ python -c "import bagua_core; bagua_core.install_deps()" && \ python -c "import bagua; print(bagua.__version__)" RUN \ # Show what we have pip --version && \ conda info && \ pip list && \ python -c "import sys; ver = sys.version_info ; assert f'{ver.major}.{ver.minor}' == '$PYTHON_VERSION', ver" && \ python -c "import torch; assert torch.__version__.startswith('$PYTORCH_VERSION'), torch.__version__" && \ python requirements/pytorch/check-avail-extras.py && \ python requirements/pytorch/check-avail-strategies.py && \ rm -rf requirements/