import pytest import torch from torch.utils.data.dataloader import DataLoader from pytorch_lightning.utilities.data import extract_batch_size, get_len, has_iterable_dataset, has_len from tests.helpers.boring_model import RandomDataset, RandomIterableDataset def test_extract_batch_size(): """Tests the behavior of extracting the batch size.""" batch = "test string" assert extract_batch_size(batch) == 11 batch = torch.zeros(11, 10, 9, 8) assert extract_batch_size(batch) == 11 batch = {"test": torch.zeros(11, 10)} assert extract_batch_size(batch) == 11 batch = [torch.zeros(11, 10)] assert extract_batch_size(batch) == 11 batch = {"test": [{"test": [torch.zeros(11, 10)]}]} assert extract_batch_size(batch) == 11 def test_has_iterable_dataset(): assert has_iterable_dataset(DataLoader(RandomIterableDataset(1, 1))) assert not has_iterable_dataset(DataLoader(RandomDataset(1, 1))) class MockDatasetWithoutIterableDataset(RandomDataset): def __iter__(self): yield 1 return self assert not has_iterable_dataset(DataLoader(MockDatasetWithoutIterableDataset(1, 1))) def test_has_len(): assert has_len(DataLoader(RandomDataset(1, 1))) with pytest.raises(ValueError, match="`Dataloader` returned 0 length."): assert has_len(DataLoader(RandomDataset(0, 0))) assert not has_len(DataLoader(RandomIterableDataset(1, 1))) def test_get_len(): assert get_len(DataLoader(RandomDataset(1, 1))) == 1 value = get_len(DataLoader(RandomIterableDataset(1, 1))) assert isinstance(value, float) assert value == float("inf")