# Copyright The Lightning AI team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from abc import ABC, abstractmethod from typing import Callable import torch import torch.nn as nn import torch.nn.functional as F from torch.optim import Optimizer from torch.utils.data import DataLoader, TensorDataset class ParityModel(ABC, nn.Module): """Defines the interface for a model in a Fabric-PyTorch parity test.""" # Benchmarking parameters that should be model-specific batch_size = 1 num_steps = 1 @abstractmethod def get_optimizer(self, *args, **kwargs) -> Optimizer: pass @abstractmethod def get_dataloader(self, *args, **kwargs) -> DataLoader: pass @abstractmethod def get_loss_function(self) -> Callable: pass class ConvNet(ParityModel): batch_size = 4 num_steps = 1000 def __init__(self): super().__init__() self.conv1 = nn.Conv2d(3, 6, 5) self.pool = nn.MaxPool2d(2, 2) self.conv2 = nn.Conv2d(6, 16, 5) self.fc1 = nn.Linear(16 * 5 * 5, 120) self.fc2 = nn.Linear(120, 84) self.fc3 = nn.Linear(84, 10) def forward(self, x): x = self.pool(F.relu(self.conv1(x))) x = self.pool(F.relu(self.conv2(x))) x = torch.flatten(x, 1) # flatten all dimensions except batch x = F.relu(self.fc1(x)) x = F.relu(self.fc2(x)) x = self.fc3(x) return x def get_optimizer(self): return torch.optim.SGD(self.parameters(), lr=0.0001) def get_dataloader(self): # multiply * 8 just in case world size is larger than 1 dataset_size = self.num_steps * self.batch_size * 8 inputs = torch.rand(dataset_size, 3, 32, 32) labels = torch.randint(0, 10, (dataset_size,)) dataset = TensorDataset(inputs, labels) return DataLoader( dataset, batch_size=self.batch_size, num_workers=2, ) def get_loss_function(self): return F.cross_entropy