import os from tests_cloud import _API_KEY, _PROJECT_ID, _USERNAME from tests_cloud.helpers import cleanup import pytorch_lightning as pl from lightning.store import download_from_cloud, load_model, upload_to_cloud from lightning.store.save import _LIGHTNING_STORAGE_DIR from pytorch_lightning.demos.boring_classes import BoringModel def test_model(model_name: str = "boring_model", version: str = "latest"): cleanup() upload_to_cloud(model_name, model=BoringModel(), api_key=_API_KEY, project_id=_PROJECT_ID) download_from_cloud(f"{_USERNAME}/{model_name}") assert os.path.isdir(os.path.join(_LIGHTNING_STORAGE_DIR, _USERNAME, model_name, version)) model = load_model(f"{_USERNAME}/{model_name}") assert model is not None def test_model_without_progress_bar(model_name: str = "boring_model", version: str = "latest"): cleanup() upload_to_cloud(model_name, model=BoringModel(), api_key=_API_KEY, project_id=_PROJECT_ID, progress_bar=False) download_from_cloud(f"{_USERNAME}/{model_name}", progress_bar=False) assert os.path.isdir(os.path.join(_LIGHTNING_STORAGE_DIR, _USERNAME, model_name, version)) model = load_model(f"{_USERNAME}/{model_name}") assert model is not None def test_only_weights(model_name: str = "boring_model_only_weights", version: str = "latest"): cleanup() model = BoringModel() trainer = pl.Trainer(fast_dev_run=True) trainer.fit(model) upload_to_cloud(model_name, model=model, weights_only=True, api_key=_API_KEY, project_id=_PROJECT_ID) download_from_cloud(f"{_USERNAME}/{model_name}") assert os.path.isdir(os.path.join(_LIGHTNING_STORAGE_DIR, _USERNAME, model_name, version)) model_with_weights = load_model(f"{_USERNAME}/{model_name}", load_weights=True, model=model) assert model_with_weights is not None assert model_with_weights.state_dict() is not None def test_checkpoint_path(model_name: str = "boring_model_only_checkpoint_path", version: str = "latest"): cleanup() model = BoringModel() trainer = pl.Trainer(fast_dev_run=True) trainer.fit(model) trainer.save_checkpoint("tmp.ckpt") upload_to_cloud(model_name, checkpoint_path="tmp.ckpt", api_key=_API_KEY, project_id=_PROJECT_ID) download_from_cloud(f"{_USERNAME}/{model_name}") assert os.path.isdir(os.path.join(_LIGHTNING_STORAGE_DIR, _USERNAME, model_name, version)) ckpt = load_model(f"{_USERNAME}/{model_name}", load_checkpoint=True, model=model) assert ckpt is not None