# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Any, List, MutableSequence, Optional, Tuple, Union import torch from pytorch_lightning.plugins.environments import TorchElasticEnvironment from pytorch_lightning.utilities import _TPU_AVAILABLE from pytorch_lightning.utilities.exceptions import MisconfigurationException def determine_root_gpu_device(gpus: List[int]) -> Optional[int]: """ Args: gpus: non-empty list of ints representing which gpus to use Returns: designated root GPU device id Raises: TypeError: If ``gpus`` is not a list AssertionError: If GPU list is empty """ if gpus is None: return None if not isinstance(gpus, list): raise TypeError("gpus should be a list") assert len(gpus) > 0, "gpus should be a non empty list" # set root gpu root_gpu = gpus[0] return root_gpu def parse_gpu_ids(gpus: Optional[Union[int, str, List[int]]]) -> Optional[List[int]]: """ Parses the GPU ids given in the format as accepted by the :class:`~pytorch_lightning.trainer.Trainer`. Args: gpus: An int -1 or string '-1' indicate that all available GPUs should be used. A list of unique ints or a string containing list of comma separated unique integers indicates specific GPUs to use. An int 0 means that no GPUs should be used. Any int N > 0 indicates that GPUs [0..N) should be used. Returns: a list of gpus to be used or ``None`` if no GPUs were requested If no GPUs are available but the value of gpus variable indicates request for GPUs then a MisconfigurationException is raised. """ # Check that gpus param is None, Int, String or List _check_data_type(gpus) # Handle the case when no gpus are requested if gpus is None or isinstance(gpus, int) and gpus == 0 or str(gpus).strip() == "0": return None # We know user requested GPUs therefore if some of the # requested GPUs are not available an exception is thrown. gpus = _normalize_parse_gpu_string_input(gpus) gpus = _normalize_parse_gpu_input_to_list(gpus) if not gpus: raise MisconfigurationException("GPUs requested but none are available.") if TorchElasticEnvironment.is_using_torchelastic() and len(gpus) != 1 and len(_get_all_available_gpus()) == 1: # omit sanity check on torchelastic as by default shows one visible GPU per process return gpus # Check that gpus are unique. Duplicate gpus are not supported by the backend. _check_unique(gpus) return _sanitize_gpu_ids(gpus) def parse_tpu_cores(tpu_cores: Union[int, str, List]) -> Optional[Union[int, List[int]]]: """ Parses the tpu_cores given in the format as accepted by the :class:`~pytorch_lightning.trainer.Trainer`. Args: tpu_cores: An int 1 or string '1' indicate that 1 core with multi-processing should be used An int 8 or string '8' indicate that all 8 cores with multi-processing should be used A list of int or a string containing list of comma separated integer indicates specific TPU core to use. Returns: a list of tpu_cores to be used or ``None`` if no TPU cores were requested Raises: MisconfigurationException: If TPU cores aren't 1 or 8 cores, or no TPU devices are found """ _check_data_type(tpu_cores) if isinstance(tpu_cores, str): tpu_cores = _parse_tpu_cores_str(tpu_cores.strip()) if not _tpu_cores_valid(tpu_cores): raise MisconfigurationException("`tpu_cores` can only be 1, 8 or [<1-8>]") if tpu_cores is not None and not _TPU_AVAILABLE: raise MisconfigurationException("No TPU devices were found.") return tpu_cores def _normalize_parse_gpu_string_input(s: Union[int, str, List[int]]) -> Union[int, List[int]]: if not isinstance(s, str): return s if s == "-1": return -1 if "," in s: return [int(x.strip()) for x in s.split(",") if len(x) > 0] return int(s.strip()) def _sanitize_gpu_ids(gpus: List[int]) -> List[int]: """Checks that each of the GPUs in the list is actually available. Raises a MisconfigurationException if any of the GPUs is not available. Args: gpus: list of ints corresponding to GPU indices Returns: unmodified gpus variable Raises: MisconfigurationException: If machine has fewer available GPUs than requested. """ all_available_gpus = _get_all_available_gpus() for gpu in gpus: if gpu not in all_available_gpus: raise MisconfigurationException( f"You requested GPUs: {gpus}\n But your machine only has: {all_available_gpus}" ) return gpus def _normalize_parse_gpu_input_to_list(gpus: Union[int, List[int], Tuple[int, ...]]) -> Optional[List[int]]: assert gpus is not None if isinstance(gpus, (MutableSequence, tuple)): return list(gpus) # must be an int if not gpus: # gpus==0 return None if gpus == -1: return _get_all_available_gpus() return list(range(gpus)) def _get_all_available_gpus() -> List[int]: """ Returns: a list of all available gpus """ return list(range(torch.cuda.device_count())) def _check_unique(device_ids: List[int]) -> None: """Checks that the device_ids are unique. Args: device_ids: list of ints corresponding to gpus indices Raises: MisconfigurationException: If ``device_ids`` of GPUs aren't unique """ if len(device_ids) != len(set(device_ids)): raise MisconfigurationException("Device ID's (GPU) must be unique.") def _check_data_type(device_ids: Any) -> None: """Checks that the device_ids argument is one of: None, Int, String or List. Raises a MisconfigurationException otherwise. Args: device_ids: gpus/tpu_cores parameter as passed to the Trainer Raises: MisconfigurationException: If ``device_ids`` of GPU/TPUs aren't ``int``, ``str``, sequence of ``int`` or ``None`` """ if device_ids is not None and ( not isinstance(device_ids, (int, str, MutableSequence, tuple)) or isinstance(device_ids, bool) ): raise MisconfigurationException("Device ID's (GPU/TPU) must be int, string or sequence of ints or None.") def _tpu_cores_valid(tpu_cores: Any) -> bool: # allow 1 or 8 cores if tpu_cores in (1, 8, None): return True # allow picking 1 of 8 indexes if isinstance(tpu_cores, (list, tuple, set)): has_1_tpu_idx = len(tpu_cores) == 1 is_valid_tpu_idx = 1 <= list(tpu_cores)[0] <= 8 is_valid_tpu_core_choice = has_1_tpu_idx and is_valid_tpu_idx return is_valid_tpu_core_choice return False def _parse_tpu_cores_str(tpu_cores: str) -> Union[int, List[int]]: if tpu_cores in ("1", "8"): return int(tpu_cores) return [int(x.strip()) for x in tpu_cores.split(",") if len(x) > 0]