# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging from typing import Optional from pytorch_lightning.loops import Loop from pytorch_lightning.loops.epoch import TrainingEpochLoop from pytorch_lightning.loops.utilities import _is_max_limit_reached from pytorch_lightning.trainer.connectors.logger_connector.result import ResultCollection from pytorch_lightning.trainer.progress import Progress from pytorch_lightning.trainer.supporters import TensorRunningAccum from pytorch_lightning.utilities import rank_zero_deprecation from pytorch_lightning.utilities.exceptions import MisconfigurationException log = logging.getLogger(__name__) class FitLoop(Loop): """This Loop iterates over the epochs to run the training. Args: min_epochs: The minimum number of epochs max_epochs: The maximum number of epochs, can be set -1 to turn this limit off """ def __init__( self, min_epochs: Optional[int] = 1, max_epochs: int = 1000, ) -> None: super().__init__() if max_epochs < -1: # Allow max_epochs to be zero, since this will be handled by fit_loop.done raise MisconfigurationException( f"`max_epochs` must be a non-negative integer or -1. You passed in {max_epochs}." ) self.max_epochs = max_epochs self.min_epochs = min_epochs self.epoch_loop: Optional[TrainingEpochLoop] = None self.epoch_progress = Progress() self._is_fresh_start_epoch: bool = True @property def current_epoch(self) -> int: """Return the current epoch.""" return self.epoch_progress.current.completed @current_epoch.setter def current_epoch(self, value: int) -> None: """Setter for the current epoch.""" self.epoch_progress.current.completed = value @property def global_step(self) -> int: """Returns the global step.""" return self.epoch_loop.global_step @global_step.setter def global_step(self, value: int) -> None: """Sets the global step (forwards to epoch_loop)""" self.epoch_loop.global_step = value @property def total_batch_idx(self) -> int: """Returns the current batch index (across epochs)""" return self.epoch_loop.total_batch_idx @property def batch_idx(self) -> int: """Returns the current batch index (within this epoch)""" return self.epoch_loop.batch_idx @property def split_idx(self) -> int: """Returns the index of the current batch split (within the current batch) for bptt.""" return self.epoch_loop.batch_loop.split_idx @property def min_steps(self) -> int: # TODO(@justusschock): Why aren't we using the attribute in this class? """Returns the minimum numnber of steps to run.""" return self.epoch_loop.min_steps @min_steps.setter def min_steps(self, value: int) -> None: """Sets the minimum number of steps (forwards to epoch_loop)""" # TODO(@awaelchli): This setter is required by debugging connector (fast dev run), should be avoided self.epoch_loop.min_steps = value @property def max_steps(self) -> int: """Returns the maximum number of steps to run.""" return self.epoch_loop.max_steps @max_steps.setter def max_steps(self, value: int) -> None: """Sets the maximum number of steps (forwards to epoch_loop)""" # TODO(@awaelchli): This setter is required by debugging connector (fast dev run), should be avoided if value is None: rank_zero_deprecation( "Setting `max_steps = None` is deprecated in v1.5 and will no longer be supported in v1.7." " Use `max_steps = -1` instead." ) value = -1 elif value < -1: raise MisconfigurationException( f"`max_steps` must be a non-negative integer or -1 (infinite steps). You passed in {value}." ) self.epoch_loop.max_steps = value @property def running_loss(self) -> TensorRunningAccum: """Returns the running loss.""" return self.epoch_loop.batch_loop.running_loss @property def _skip_backward(self) -> bool: """Determines whether the loop will skip backward during automatic optimization.""" assert self.epoch_loop.batch_loop is not None assert self.epoch_loop.batch_loop.optimizer_loop is not None return self.epoch_loop.batch_loop.optimizer_loop._skip_backward @_skip_backward.setter def _skip_backward(self, value: bool) -> None: """Determines whether the loop will skip backward during automatic optimization.""" assert self.epoch_loop.batch_loop is not None assert self.epoch_loop.batch_loop.optimizer_loop is not None self.epoch_loop.batch_loop.optimizer_loop._skip_backward = value @property def _results(self) -> ResultCollection: if self.trainer.training: return self.epoch_loop._results if self.trainer.validating: return self.epoch_loop.val_loop._results raise RuntimeError("`FitLoop._results` property isn't defined. Accessed outside of scope") @property def done(self) -> bool: """Evaluates when to leave the loop. Returns True if trainer.should_stop was set (e.g. by early stopping) or if the maximum number of steps or epochs is reached. """ # TODO(@awaelchli): Move track steps inside training loop and move part of these condition inside training loop stop_steps = _is_max_limit_reached(self.global_step, self.max_steps) stop_epochs = _is_max_limit_reached(self.current_epoch, self.max_epochs) should_stop = False if self.trainer.should_stop: # early stopping met_min_epochs = self.current_epoch >= self.min_epochs if self.min_epochs else True met_min_steps = self.global_step >= self.min_steps if self.min_steps else True if met_min_epochs and met_min_steps: should_stop = True else: log.info( "Trainer was signaled to stop but required minimum epochs" f" ({self.min_epochs}) or minimum steps ({self.min_steps}) has" " not been met. Training will continue..." ) self.trainer.should_stop = should_stop return stop_steps or should_stop or stop_epochs or self.trainer.num_training_batches == 0 @property def skip(self) -> bool: """Whether we should skip the training and immediately return from the call to :meth:`run`.""" # since `trainer.num_training_batches` depends on the `train_dataloader` but that won't be called # until `on_run_start`, we use `limit_train_batches` instead return self.done or self.trainer.limit_train_batches == 0 def connect(self, epoch_loop: TrainingEpochLoop): """Connects a training epoch loop to this fit loop.""" self.epoch_loop = epoch_loop def reset(self) -> None: """Resets the internal state of this loop.""" if self.restarting: self.epoch_progress.reset_on_restart() def on_run_start(self) -> None: """Calls the ``on_train_start`` hook.""" # reset train dataloader and val dataloader self.trainer.reset_train_val_dataloaders(self.trainer.lightning_module) self._is_fresh_start_epoch = True self._results.to(device=self.trainer.lightning_module.device) self.trainer.call_hook("on_train_start") def on_advance_start(self) -> None: """Prepares the dataloader for training and calls the hooks ``on_epoch_start`` and ``on_train_epoch_start``""" model = self.trainer.lightning_module # reset train dataloader if not self._is_fresh_start_epoch and self.trainer._should_reload_dl_epoch: self.trainer.reset_train_dataloader(model) self._is_fresh_start_epoch = False if self.trainer.train_dataloader is not None and callable( getattr(self.trainer.train_dataloader.sampler, "set_epoch", None) ): # set seed for distributed sampler (enables shuffling for each epoch) self.trainer.train_dataloader.sampler.set_epoch(self.current_epoch) # changing gradient according accumulation_scheduler self.trainer.accumulation_scheduler.on_train_epoch_start(self.trainer, self.trainer.lightning_module) # stores accumulated grad fractions per batch self.epoch_loop.batch_loop.accumulated_loss = TensorRunningAccum( window_length=self.trainer.accumulate_grad_batches ) self.epoch_progress.increment_ready() def advance(self) -> None: """Runs one whole epoch.""" dataloader = self.trainer.training_type_plugin.process_dataloader(self.trainer.train_dataloader) data_fetcher = self.trainer._data_connector.get_profiled_dataloader(dataloader) with self.trainer.profiler.profile("run_training_epoch"): self.epoch_loop.run(data_fetcher) # the global step is manually decreased here due to backwards compatibility with existing loggers # as they expect that the same step is used when logging epoch end metrics even when the batch loop has # finished. this means the attribute does not exactly track the number of optimizer steps applied. # TODO(@carmocca): deprecate and rename so users don't get confused self.global_step -= 1 # log epoch metrics self.trainer.logger_connector.update_train_epoch_metrics() self.global_step += 1 def on_advance_end(self) -> None: self.epoch_progress.increment_completed() def on_run_end(self) -> None: """Calls the ``on_train_end`` hook.""" # NOTE: the current_epoch is already incremented # Lightning today does not increment the current epoch at the last epoch run in Trainer.fit # To simulate that current behavior, we decrement here. # TODO: must be fixed by https://github.com/PyTorchLightning/pytorch-lightning/issues/5007 self.current_epoch = max(self.current_epoch - 1, 0) # hook self.trainer.call_hook("on_train_end") # give accelerators a chance to finish self.trainer.training_type_plugin.on_train_end() def teardown(self) -> None: self.epoch_loop.teardown() def _should_accumulate(self) -> bool: """Whether the gradients should be accumulated.""" return self.epoch_loop._should_accumulate()