# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Weights and Biases Logger ------------------------- """ import operator import os from argparse import Namespace from pathlib import Path from typing import Any, Dict, List, Optional, Union from weakref import ReferenceType import torch.nn as nn from pytorch_lightning.callbacks.model_checkpoint import ModelCheckpoint from pytorch_lightning.loggers.base import LightningLoggerBase, rank_zero_experiment from pytorch_lightning.utilities import _module_available, rank_zero_only from pytorch_lightning.utilities.exceptions import MisconfigurationException from pytorch_lightning.utilities.imports import _compare_version from pytorch_lightning.utilities.warnings import rank_zero_warn _WANDB_AVAILABLE = _module_available("wandb") _WANDB_GREATER_EQUAL_0_10_22 = _compare_version("wandb", operator.ge, "0.10.22") try: import wandb from wandb.wandb_run import Run except ModuleNotFoundError: # needed for test mocks, these tests shall be updated wandb, Run = None, None class WandbLogger(LightningLoggerBase): r""" Log using `Weights and Biases `_. **Installation and set-up** Install with pip: .. code-block:: bash pip install wandb Create a `WandbLogger` instance: .. code-block:: python from pytorch_lightning.loggers import WandbLogger wandb_logger = WandbLogger(project="MNIST") Pass the logger instance to the `Trainer`: .. code-block:: python trainer = Trainer(logger=wandb_logger) A new W&B run will be created when training starts if you have not created one manually before with `wandb.init()`. **Log metrics** Log from :class:`~pytorch_lightning.core.lightning.LightningModule`: .. code-block:: python class LitModule(LightningModule): def training_step(self, batch, batch_idx): self.log("train/loss", loss) Use directly wandb module: .. code-block:: python wandb.log({"train/loss": loss}) **Log hyper-parameters** Save :class:`~pytorch_lightning.core.lightning.LightningModule` parameters: .. code-block:: python class LitModule(LightningModule): def __init__(self, *args, **kwarg): self.save_hyperparameters() Add other config parameters: .. code-block:: python # add one parameter wandb_logger.experiment.config["key"] = value # add multiple parameters wandb_logger.experiment.config.update({key1: val1, key2: val2}) # use directly wandb module wandb.config["key"] = value wandb.config.update() **Log gradients, parameters and model topology** Call the `watch` method for automatically tracking gradients: .. code-block:: python # log gradients and model topology wandb_logger.watch(model) # log gradients, parameter histogram and model topology wandb_logger.watch(model, log="all") # change log frequency of gradients and parameters (100 steps by default) wandb_logger.watch(model, log_freq=500) # do not log graph (in case of errors) wandb_logger.watch(model, log_graph=False) The `watch` method adds hooks to the model which can be removed at the end of training: .. code-block:: python wandb_logger.unwatch(model) **Log model checkpoints** Log model checkpoints at the end of training: .. code-block:: python wandb_logger = WandbLogger(log_model=True) Log model checkpoints as they get created during training: .. code-block:: python wandb_logger = WandbLogger(log_model="all") Custom checkpointing can be set up through :class:`~pytorch_lightning.callbacks.ModelCheckpoint`: .. code-block:: python # log model only if `val_accuracy` increases wandb_logger = WandbLogger(log_model="all") checkpoint_callback = ModelCheckpoint(monitor="val_accuracy", mode="max") trainer = Trainer(logger=wandb_logger, callbacks=[checkpoint_callback]) `latest` and `best` aliases are automatically set to easily retrieve a model checkpoint: .. code-block:: python # reference can be retrieved in artifacts panel # "VERSION" can be a version (ex: "v2") or an alias ("latest or "best") checkpoint_reference = "USER/PROJECT/MODEL-RUN_ID:VERSION" # download checkpoint locally (if not already cached) run = wandb.init(project="MNIST") artifact = run.use_artifact(checkpoint_reference, type="model") artifact_dir = artifact.download() # load checkpoint model = LitModule.load_from_checkpoint(Path(artifact_dir) / "model.ckpt") **Log media** Log text with: .. code-block:: python # using columns and data columns = ["input", "label", "prediction"] data = [["cheese", "english", "english"], ["fromage", "french", "spanish"]] wandb_logger.log_text(key="samples", columns=columns, data=data) # using a pandas DataFrame wandb_logger.log_text(key="samples", dataframe=my_dataframe) Log images with: .. code-block:: python # using tensors, numpy arrays or PIL images wandb_logger.log_image(key="samples", images=[img1, img2]) # adding captions wandb_logger.log_image(key="samples", images=[img1, img2], caption=["tree", "person"]) # using file path wandb_logger.log_image(key="samples", images=["img_1.jpg", "img_2.jpg"]) More arguments can be passed for logging segmentation masks and bounding boxes. Refer to `Image Overlays documentation `_. **Log Tables** `W&B Tables `_ can be used to log, query and analyze tabular data. They support any type of media (text, image, video, audio, molecule, html, etc) and are great for storing, understanding and sharing any form of data, from datasets to model predictions. .. code-block:: python columns = ["caption", "image", "sound"] data = [["cheese", wandb.Image(img_1), wandb.Audio(snd_1)], ["wine", wandb.Image(img_2), wandb.Audio(snd_2)]] wandb_logger.log_table(key="samples", columns=columns, data=data) See Also: - `Demo in Google Colab `__ with hyperparameter search and model logging - `W&B Documentation `__ Args: name: Display name for the run. save_dir: Path where data is saved (wandb dir by default). offline: Run offline (data can be streamed later to wandb servers). id: Sets the version, mainly used to resume a previous run. version: Same as id. anonymous: Enables or explicitly disables anonymous logging. project: The name of the project to which this run will belong. log_model: Log checkpoints created by :class:`~pytorch_lightning.callbacks.model_checkpoint.ModelCheckpoint` as W&B artifacts. `latest` and `best` aliases are automatically set. * if ``log_model == 'all'``, checkpoints are logged during training. * if ``log_model == True``, checkpoints are logged at the end of training, except when :paramref:`~pytorch_lightning.callbacks.model_checkpoint.ModelCheckpoint.save_top_k` ``== -1`` which also logs every checkpoint during training. * if ``log_model == False`` (default), no checkpoint is logged. prefix: A string to put at the beginning of metric keys. experiment: WandB experiment object. Automatically set when creating a run. \**kwargs: Arguments passed to :func:`wandb.init` like `entity`, `group`, `tags`, etc. Raises: ModuleNotFoundError: If required WandB package is not installed on the device. MisconfigurationException: If both ``log_model`` and ``offline`` is set to ``True``. """ LOGGER_JOIN_CHAR = "-" def __init__( self, name: Optional[str] = None, save_dir: Optional[str] = None, offline: Optional[bool] = False, id: Optional[str] = None, anonymous: Optional[bool] = None, version: Optional[str] = None, project: Optional[str] = None, log_model: Optional[bool] = False, experiment=None, prefix: Optional[str] = "", **kwargs, ): if wandb is None: raise ModuleNotFoundError( "You want to use `wandb` logger which is not installed yet," " install it with `pip install wandb`." # pragma: no-cover ) if offline and log_model: raise MisconfigurationException( f"Providing log_model={log_model} and offline={offline} is an invalid configuration" " since model checkpoints cannot be uploaded in offline mode.\n" "Hint: Set `offline=False` to log your model." ) if log_model and not _WANDB_GREATER_EQUAL_0_10_22: rank_zero_warn( f"Providing log_model={log_model} requires wandb version >= 0.10.22" " for logging associated model metadata.\n" "Hint: Upgrade with `pip install --upgrade wandb`." ) super().__init__() self._offline = offline self._log_model = log_model self._prefix = prefix self._experiment = experiment self._logged_model_time = {} self._checkpoint_callback = None # set wandb init arguments anonymous_lut = {True: "allow", False: None} self._wandb_init = dict( name=name, project=project, id=version or id, dir=save_dir, resume="allow", anonymous=anonymous_lut.get(anonymous, anonymous), ) self._wandb_init.update(**kwargs) # extract parameters self._save_dir = self._wandb_init.get("dir") self._name = self._wandb_init.get("name") self._id = self._wandb_init.get("id") def __getstate__(self): state = self.__dict__.copy() # args needed to reload correct experiment state["_id"] = self._experiment.id if self._experiment is not None else None # cannot be pickled state["_experiment"] = None return state @property @rank_zero_experiment def experiment(self) -> Run: r""" Actual wandb object. To use wandb features in your :class:`~pytorch_lightning.core.lightning.LightningModule` do the following. Example:: .. code-block:: python self.logger.experiment.some_wandb_function() """ if self._experiment is None: if self._offline: os.environ["WANDB_MODE"] = "dryrun" if wandb.run is None: self._experiment = wandb.init(**self._wandb_init) else: rank_zero_warn( "There is a wandb run already in progress and newly created instances of `WandbLogger` will reuse" " this run. If this is not desired, call `wandb.finish()` before instantiating `WandbLogger`." ) self._experiment = wandb.run # define default x-axis (for latest wandb versions) if getattr(self._experiment, "define_metric", None): self._experiment.define_metric("trainer/global_step") self._experiment.define_metric("*", step_metric="trainer/global_step", step_sync=True) return self._experiment def watch(self, model: nn.Module, log: str = "gradients", log_freq: int = 100, log_graph: bool = True): self.experiment.watch(model, log=log, log_freq=log_freq, log_graph=log_graph) @rank_zero_only def log_hyperparams(self, params: Union[Dict[str, Any], Namespace]) -> None: params = self._convert_params(params) params = self._flatten_dict(params) params = self._sanitize_callable_params(params) self.experiment.config.update(params, allow_val_change=True) @rank_zero_only def log_metrics(self, metrics: Dict[str, float], step: Optional[int] = None) -> None: assert rank_zero_only.rank == 0, "experiment tried to log from global_rank != 0" metrics = self._add_prefix(metrics) if step is not None: self.experiment.log({**metrics, "trainer/global_step": step}) else: self.experiment.log(metrics) @rank_zero_only def log_table( self, key: str, columns: List[str] = None, data: List[List[Any]] = None, dataframe: Any = None, step: Optional[int] = None, ) -> None: """Log a Table containing any object type (text, image, audio, video, molecule, html, etc). Can be defined either with `columns` and `data` or with `dataframe`. """ metrics = {key: wandb.Table(columns=columns, data=data, dataframe=dataframe)} self.log_metrics(metrics, step) @rank_zero_only def log_text( self, key: str, columns: List[str] = None, data: List[List[str]] = None, dataframe: Any = None, step: Optional[int] = None, ) -> None: """Log text as a Table. Can be defined either with `columns` and `data` or with `dataframe`. """ self.log_table(key, columns, data, dataframe, step) @rank_zero_only def log_image(self, key: str, images: List[Any], **kwargs: str) -> None: """Log images (tensors, numpy arrays, PIL Images or file paths). Optional kwargs are lists passed to each image (ex: caption, masks, boxes). """ if not isinstance(images, list): raise TypeError(f'Expected a list as "images", found {type(images)}') n = len(images) for k, v in kwargs.items(): if len(v) != n: raise ValueError(f"Expected {n} items but only found {len(v)} for {k}") step = kwargs.pop("step", None) kwarg_list = [{k: kwargs[k][i] for k in kwargs.keys()} for i in range(n)] metrics = {key: [wandb.Image(img, **kwarg) for img, kwarg in zip(images, kwarg_list)]} self.log_metrics(metrics, step) @property def save_dir(self) -> Optional[str]: """Gets the save directory. Returns: The path to the save directory. """ return self._save_dir @property def name(self) -> Optional[str]: """Gets the name of the experiment. Returns: The name of the experiment if the experiment exists else the name given to the constructor. """ # don't create an experiment if we don't have one return self._experiment.project_name() if self._experiment else self._name @property def version(self) -> Optional[str]: """Gets the id of the experiment. Returns: The id of the experiment if the experiment exists else the id given to the constructor. """ # don't create an experiment if we don't have one return self._experiment.id if self._experiment else self._id def after_save_checkpoint(self, checkpoint_callback: "ReferenceType[ModelCheckpoint]") -> None: # log checkpoints as artifacts if self._log_model == "all" or self._log_model is True and checkpoint_callback.save_top_k == -1: self._scan_and_log_checkpoints(checkpoint_callback) elif self._log_model is True: self._checkpoint_callback = checkpoint_callback @rank_zero_only def finalize(self, status: str) -> None: # log checkpoints as artifacts if self._checkpoint_callback: self._scan_and_log_checkpoints(self._checkpoint_callback) def _scan_and_log_checkpoints(self, checkpoint_callback: "ReferenceType[ModelCheckpoint]") -> None: # get checkpoints to be saved with associated score checkpoints = { checkpoint_callback.last_model_path: checkpoint_callback.current_score, checkpoint_callback.best_model_path: checkpoint_callback.best_model_score, **checkpoint_callback.best_k_models, } checkpoints = sorted((Path(p).stat().st_mtime, p, s) for p, s in checkpoints.items() if Path(p).is_file()) checkpoints = [ c for c in checkpoints if c[1] not in self._logged_model_time.keys() or self._logged_model_time[c[1]] < c[0] ] # log iteratively all new checkpoints for t, p, s in checkpoints: metadata = ( { "score": s, "original_filename": Path(p).name, "ModelCheckpoint": { k: getattr(checkpoint_callback, k) for k in [ "monitor", "mode", "save_last", "save_top_k", "save_weights_only", "_every_n_train_steps", ] # ensure it does not break if `ModelCheckpoint` args change if hasattr(checkpoint_callback, k) }, } if _WANDB_GREATER_EQUAL_0_10_22 else None ) artifact = wandb.Artifact(name=f"model-{self.experiment.id}", type="model", metadata=metadata) artifact.add_file(p, name="model.ckpt") aliases = ["latest", "best"] if p == checkpoint_callback.best_model_path else ["latest"] self.experiment.log_artifact(artifact, aliases=aliases) # remember logged models - timestamp needed in case filename didn't change (lastkckpt or custom name) self._logged_model_time[p] = t