# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Any, Dict, Optional, Union import torch import pytorch_lightning as pl from pytorch_lightning.accelerators.accelerator import Accelerator from pytorch_lightning.plugins.precision import TPUPrecisionPlugin from pytorch_lightning.plugins.training_type.single_tpu import SingleTPUPlugin from pytorch_lightning.plugins.training_type.tpu_spawn import TPUSpawnPlugin from pytorch_lightning.utilities import _XLA_AVAILABLE from pytorch_lightning.utilities.apply_func import apply_to_collection, move_data_to_device if _XLA_AVAILABLE: import torch_xla.core.xla_model as xm class TPUAccelerator(Accelerator): """Accelerator for TPU devices.""" def setup(self, trainer: "pl.Trainer") -> None: """ Raises: ValueError: If the precision or training type plugin are unsupported. """ if not isinstance(self.precision_plugin, TPUPrecisionPlugin): # this configuration should have been avoided in the accelerator connector raise ValueError( f"The `TPUAccelerator` can only be used with a `TPUPrecisionPlugin`, found: {self.precision_plugin}." ) if not isinstance(self.training_type_plugin, (SingleTPUPlugin, TPUSpawnPlugin)): raise ValueError( "The `TPUAccelerator` can only be used with a `SingleTPUPlugin` or `TPUSpawnPlugin," f" found {self.training_type_plugin}." ) return super().setup(trainer) def _move_optimizer_state(self, device: Optional[torch.device] = None) -> None: """Moves the state of the optimizers to the TPU if needed.""" # TODO: `self.root_device` would raise error if called outside the spawn process # while training on 8 and more cores. for opt in self.optimizers: for p, v in opt.state.items(): opt.state[p] = apply_to_collection(v, torch.Tensor, move_data_to_device, self.root_device) def get_device_stats(self, device: Union[str, torch.device]) -> Dict[str, Any]: """Gets stats for the given TPU device. Args: device: TPU device for which to get stats Returns: A dictionary mapping the metrics (free memory and peak memory) to their values. """ memory_info = xm.get_memory_info(device) free_memory = memory_info["kb_free"] peak_memory = memory_info["kb_total"] - free_memory device_stats = { "avg. free memory (MB)": free_memory, "avg. peak memory (MB)": peak_memory, } return device_stats @staticmethod def auto_device_count() -> int: """Get the devices when set to auto.""" return 8