# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ MNIST autoencoder example. To run: python autoencoder.py --trainer.max_epochs=50 """ import torch import torch.nn.functional as F from torch import nn from torch.utils.data import DataLoader, random_split import pytorch_lightning as pl from pl_examples import _DATASETS_PATH, _TORCHVISION_MNIST_AVAILABLE, cli_lightning_logo from pytorch_lightning.utilities.cli import LightningCLI from pytorch_lightning.utilities.imports import _TORCHVISION_AVAILABLE if _TORCHVISION_AVAILABLE: from torchvision import transforms if _TORCHVISION_MNIST_AVAILABLE: from torchvision.datasets import MNIST else: from tests.helpers.datasets import MNIST class LitAutoEncoder(pl.LightningModule): """ >>> LitAutoEncoder() # doctest: +ELLIPSIS +NORMALIZE_WHITESPACE LitAutoEncoder( (encoder): ... (decoder): ... ) """ def __init__(self, hidden_dim: int = 64): super().__init__() self.encoder = nn.Sequential( nn.Linear(28 * 28, hidden_dim), nn.ReLU(), nn.Linear(hidden_dim, 3), ) self.decoder = nn.Sequential( nn.Linear(3, hidden_dim), nn.ReLU(), nn.Linear(hidden_dim, 28 * 28), ) def forward(self, x): # in lightning, forward defines the prediction/inference actions embedding = self.encoder(x) return embedding def training_step(self, batch, batch_idx): x, y = batch x = x.view(x.size(0), -1) z = self.encoder(x) x_hat = self.decoder(z) loss = F.mse_loss(x_hat, x) return loss def validation_step(self, batch, batch_idx): x, y = batch x = x.view(x.size(0), -1) z = self.encoder(x) x_hat = self.decoder(z) loss = F.mse_loss(x_hat, x) self.log('valid_loss', loss, on_step=True) def test_step(self, batch, batch_idx): x, y = batch x = x.view(x.size(0), -1) z = self.encoder(x) x_hat = self.decoder(z) loss = F.mse_loss(x_hat, x) self.log('test_loss', loss, on_step=True) def configure_optimizers(self): optimizer = torch.optim.Adam(self.parameters(), lr=1e-3) return optimizer class MyDataModule(pl.LightningDataModule): def __init__( self, batch_size: int = 32, ): super().__init__() dataset = MNIST(_DATASETS_PATH, train=True, download=True, transform=transforms.ToTensor()) self.mnist_test = MNIST(_DATASETS_PATH, train=False, download=True, transform=transforms.ToTensor()) self.mnist_train, self.mnist_val = random_split(dataset, [55000, 5000]) self.batch_size = batch_size def train_dataloader(self): return DataLoader(self.mnist_train, batch_size=self.batch_size) def val_dataloader(self): return DataLoader(self.mnist_val, batch_size=self.batch_size) def test_dataloader(self): return DataLoader(self.mnist_test, batch_size=self.batch_size) def cli_main(): cli = LightningCLI(LitAutoEncoder, MyDataModule, seed_everything_default=1234) cli.trainer.test(cli.model, datamodule=cli.datamodule) if __name__ == '__main__': cli_lightning_logo() cli_main()