# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import operator from abc import ABC from collections.abc import Mapping, Sequence from copy import copy from functools import partial from typing import Any, Callable, Optional, Union import numpy as np import torch from pytorch_lightning.utilities.exceptions import MisconfigurationException from pytorch_lightning.utilities.imports import _compare_version, _TORCHTEXT_AVAILABLE if _TORCHTEXT_AVAILABLE: if _compare_version("torchtext", operator.ge, "0.9.0"): from torchtext.legacy.data import Batch else: from torchtext.data import Batch else: Batch = type(None) def to_dtype_tensor(value, dtype: torch.dtype = None, device: torch.device = None): if device is None: raise MisconfigurationException("device (torch.device) should be provided.") return torch.tensor(value, dtype=dtype, device=device) def from_numpy(value, device: torch.device = None): if device is None: raise MisconfigurationException("device (torch.device) should be provided.") return torch.from_numpy(value).to(device) CONVERSION_DTYPES = [ # bool -> uint8 as bool -> torch.bool triggers RuntimeError: Unsupported data type for NCCL process group (bool, partial(to_dtype_tensor, dtype=torch.uint8)), (int, partial(to_dtype_tensor, dtype=torch.int)), (float, partial(to_dtype_tensor, dtype=torch.float)), (np.ndarray, from_numpy), ] def apply_to_collection( data: Any, dtype: Union[type, tuple], function: Callable, *args, wrong_dtype: Optional[Union[type, tuple]] = None, **kwargs ) -> Any: """ Recursively applies a function to all elements of a certain dtype. Args: data: the collection to apply the function to dtype: the given function will be applied to all elements of this dtype function: the function to apply *args: positional arguments (will be forwarded to calls of ``function``) wrong_dtype: the given function won't be applied if this type is specified and the given collections is of the :attr:`wrong_type` even if it is of type :attr`dtype` **kwargs: keyword arguments (will be forwarded to calls of ``function``) Returns: the resulting collection """ elem_type = type(data) # Breaking condition if isinstance(data, dtype) and (wrong_dtype is None or not isinstance(data, wrong_dtype)): return function(data, *args, **kwargs) # Recursively apply to collection items if isinstance(data, Mapping): return elem_type({k: apply_to_collection(v, dtype, function, *args, **kwargs) for k, v in data.items()}) if isinstance(data, tuple) and hasattr(data, '_fields'): # named tuple return elem_type(*(apply_to_collection(d, dtype, function, *args, **kwargs) for d in data)) if isinstance(data, Sequence) and not isinstance(data, str): return elem_type([apply_to_collection(d, dtype, function, *args, **kwargs) for d in data]) # data is neither of dtype, nor a collection return data class TransferableDataType(ABC): """ A custom type for data that can be moved to a torch device via `.to(...)`. Example: >>> isinstance(dict, TransferableDataType) False >>> isinstance(torch.rand(2, 3), TransferableDataType) True >>> class CustomObject: ... def __init__(self): ... self.x = torch.rand(2, 2) ... def to(self, device): ... self.x = self.x.to(device) ... return self >>> isinstance(CustomObject(), TransferableDataType) True """ @classmethod def __subclasshook__(cls, subclass): if cls is TransferableDataType: to = getattr(subclass, "to", None) return callable(to) return NotImplemented def move_data_to_device(batch: Any, device: torch.device): """ Transfers a collection of data to the given device. Any object that defines a method ``to(device)`` will be moved and all other objects in the collection will be left untouched. Args: batch: A tensor or collection of tensors or anything that has a method `.to(...)`. See :func:`apply_to_collection` for a list of supported collection types. device: The device to which the data should be moved Return: the same collection but with all contained tensors residing on the new device. See Also: - :meth:`torch.Tensor.to` - :class:`torch.device` """ def batch_to(data): # try to move torchtext data first if _TORCHTEXT_AVAILABLE and isinstance(data, Batch): # Shallow copy because each Batch has a reference to Dataset which contains all examples device_data = copy(data) for field, field_value in data.dataset.fields.items(): if field_value is None: continue device_field = move_data_to_device(getattr(data, field), device) setattr(device_data, field, device_field) return device_data kwargs = dict(non_blocking=True) if isinstance(data, torch.Tensor) else {} return data.to(device, **kwargs) dtype = (TransferableDataType, Batch) if _TORCHTEXT_AVAILABLE else TransferableDataType return apply_to_collection(batch, dtype=dtype, function=batch_to) def convert_to_tensors(data, device: torch.device = None): if device is None: raise MisconfigurationException("device (torch.device) should be provided.") for src_dtype, conversion_func in CONVERSION_DTYPES: data = apply_to_collection(data, src_dtype, partial(conversion_func, device=device)) def _move_to_device_and_make_contiguous(t: torch.Tensor, device: torch.device): return t.to(device).contiguous() data = apply_to_collection(data, torch.Tensor, partial(_move_to_device_and_make_contiguous, device=device)) return data