import torch from torch.nn import functional as F from pytorch_lightning.metrics.functional.reduction import reduce def mse( pred: torch.Tensor, target: torch.Tensor, reduction: str = 'elementwise_mean' ) -> torch.Tensor: """ Computes mean squared error Args: pred: estimated labels target: ground truth labels reduction: method for reducing mse (default: takes the mean) Available reduction methods: - elementwise_mean: takes the mean - none: pass array - sum: add elements Return: Tensor with MSE Example: >>> x = torch.tensor([0., 1, 2, 3]) >>> y = torch.tensor([0., 1, 2, 2]) >>> mse(x, y) tensor(0.2500) """ mse = F.mse_loss(pred, target, reduction='none') mse = reduce(mse, reduction=reduction) return mse def rmse( pred: torch.Tensor, target: torch.Tensor, reduction: str = 'elementwise_mean' ) -> torch.Tensor: """ Computes root mean squared error Args: pred: estimated labels target: ground truth labels reduction: method for reducing rmse (default: takes the mean) Available reduction methods: - elementwise_mean: takes the mean - none: pass array - sum: add elements Return: Tensor with RMSE >>> x = torch.tensor([0., 1, 2, 3]) >>> y = torch.tensor([0., 1, 2, 2]) >>> rmse(x, y) tensor(0.5000) """ rmse = torch.sqrt(mse(pred, target, reduction=reduction)) return rmse def mae( pred: torch.Tensor, target: torch.Tensor, reduction: str = 'elementwise_mean' ) -> torch.Tensor: """ Computes mean absolute error Args: pred: estimated labels target: ground truth labels reduction: method for reducing mae (default: takes the mean) Available reduction methods: - elementwise_mean: takes the mean - none: pass array - sum: add elements Return: Tensor with MAE Example: >>> x = torch.tensor([0., 1, 2, 3]) >>> y = torch.tensor([0., 1, 2, 2]) >>> mae(x, y) tensor(0.2500) """ mae = F.l1_loss(pred, target, reduction='none') mae = reduce(mae, reduction=reduction) return mae def rmsle( pred: torch.Tensor, target: torch.Tensor, reduction: str = 'elementwise_mean' ) -> torch.Tensor: """ Computes root mean squared log error Args: pred: estimated labels target: ground truth labels reduction: method for reducing rmsle (default: takes the mean) Available reduction methods: - elementwise_mean: takes the mean - none: pass array - sum: add elements Return: Tensor with RMSLE Example: >>> x = torch.tensor([0., 1, 2, 3]) >>> y = torch.tensor([0., 1, 2, 2]) >>> rmsle(x, y) tensor(0.0207) """ rmsle = mse(torch.log(pred + 1), torch.log(target + 1), reduction=reduction) return rmsle def psnr( pred: torch.Tensor, target: torch.Tensor, data_range: float = None, base: float = 10.0, reduction: str = 'elementwise_mean' ) -> torch.Tensor: """ Computes the peak signal-to-noise ratio Args: pred: estimated signal target: groun truth signal data_range: the range of the data. If None, it is determined from the data (max - min) base: a base of a logarithm to use (default: 10) reduction: method for reducing psnr (default: takes the mean) Available reduction methods: - elementwise_mean: takes the mean - none: pass array - sum add elements Return: Tensor with PSNR score Example: >>> from pytorch_lightning.metrics.regression import PSNR >>> pred = torch.tensor([[0.0, 1.0], [2.0, 3.0]]) >>> target = torch.tensor([[3.0, 2.0], [1.0, 0.0]]) >>> metric = PSNR() >>> metric(pred, target) tensor(2.5527) """ if data_range is None: data_range = max(target.max() - target.min(), pred.max() - pred.min()) else: data_range = torch.tensor(float(data_range)) mse_score = mse(pred.view(-1), target.view(-1), reduction=reduction) psnr_base_e = 2 * torch.log(data_range) - torch.log(mse_score) psnr = psnr_base_e * (10 / torch.log(torch.tensor(base))) return psnr