.. _result: Result ====== Lightning has two results objects `TrainResult` and `EvalResult`. Use these to control: - When to log (each step and/or epoch aggregate). - Where to log (progress bar or a logger). - How to sync across accelerators. ------------------ Training loop example --------------------- Return a `TrainResult` from the Training loop. .. code-block:: python def training_step(self, batch_subset, batch_idx): loss = ... result = pl.TrainResult(minimize=loss) result.log('train_loss', loss, prog_bar=True) return result If you'd like to do something special with the outputs other than logging, implement `__epoch_end`. .. code-block:: python def training_step(self, batch, batch_idx): result = pl.TrainResult(loss) result.some_prediction = some_prediction return result def training_epoch_end(self, training_step_output_result): all_train_predictions = training_step_output_result.some_prediction training_step_output_result.some_new_prediction = some_new_prediction return training_step_output_result -------------------- Validation/Test loop example ----------------------------- Return a `EvalResult` object from a validation/test loop .. code-block:: python def validation_step(self, batch, batch_idx): some_metric = ... result = pl.EvalResult(checkpoint_on=some_metric) result.log('some_metric', some_metric, prog_bar=True) return result If you'd like to do something special with the outputs other than logging, implement `__epoch_end`. .. code-block:: python def validation_step(self, batch, batch_idx): result = pl.EvalResult(checkpoint_on=some_metric) result.a_prediction = some_prediction return result def validation_epoch_end(self, validation_step_output_result): all_validation_step_predictions = validation_step_output_result.a_prediction # do something with the predictions from all validation_steps return validation_step_output_result With the equivalent using the `EvalResult` syntax ------------------ TrainResult ----------- The `TrainResult` basic usage is this: minimize ^^^^^^^^ When using TrainResult, the metric that needs to be minimized is passed to this argument. Internally, the tensor is verified to contain gradients and `.backward()` is called on it. .. code-block:: python def training_step(...): return TrainResult(some_metric) checkpoint/early_stop ^^^^^^^^^^^^^^^^^^^^^ If you are only using a training loop (no val), you can also specify what to monitor for checkpointing or early stopping: .. code-block:: python def training_step(...): return TrainResult(some_metric, checkpoint_on=metric_a, early_stop_on=metric_b) In the manual loop, checkpoint and early stop is based only on the loss returned. With the `TrainResult` you can change it every batch if you want, or even monitor different metrics for each purpose. .. code-block:: python # early stop + checkpoint can only use the `loss` when done manually via dictionaries def training_step(...): return loss def training_step(...): return {'loss': loss} logging ^^^^^^^ The main benefit of the `TrainResult` is automatic logging at whatever level you want. .. code-block:: python result = TrainResult(loss) result.log('train_loss', loss) # equivalent result.log('train_loss', loss, on_step=True, on_epoch=False, logger=True, prog_bar=False, reduce_fx=torch.mean) By default, any log calls will log only that step's metrics to the logger. To change when and where to log update the defaults as needed. Change where to log: .. code-block:: python # to logger only (default) result.log('train_loss', loss) # logger + progress bar result.log('train_loss', loss, prog_bar=True) # progress bar only result.log('train_loss', loss, prog_bar=True, logger=False) Sometimes you may also want to get epoch level statistics: .. code-block:: python # loss at this step result.log('train_loss', loss) # loss for the epoch result.log('train_loss', loss, on_step=False, on_epoch=True) # loss for the epoch AND step # the logger will show 2 charts: step_train_loss, epoch_train_loss result.log('train_loss', loss, on_epoch=True) Finally, you can use your own reduction function instead: .. code-block:: python # the total sum for all batches of an epoch result.log('train_loss', loss, on_epoch=True, reduce_fx=torch.sum) def my_reduce_fx(all_train_loss): # reduce somehow return result result.log('train_loss', loss, on_epoch=True, reduce_fx=my_reduce_fx) .. note:: Use this ONLY in the case where your loop is simple and simply logs. Finally, you may need more esoteric logging such as something specific to your logger like images: .. code-block:: python def training_step(...): result = TrainResult(some_metric) result.log('train_loss', loss) # also log images (if tensorboard for example) self.logger.experiment.log_figure(...) Sync across devices ^^^^^^^^^^^^^^^^^^^ When training on multiple GPUs/CPUs/TPU cores, calculate the global mean of a logged metric as follows: .. code-block:: python result.log('train_loss', loss, sync_dist=True) TrainResult API ^^^^^^^^^^^^^^^ .. autoclass:: pytorch_lightning.core.step_result.TrainResult :noindex: ------------------ EvalResult ---------- The `EvalResult` object has the same usage as the `TrainResult` object. .. code-block:: python def validation_step(...): return EvalResult() def test_step(...): return EvalResult() However, there are some differences: Eval minimize ^^^^^^^^^^^^^ - There is no `minimize` argument (since we don't learn during validation) Eval checkpoint/early_stopping ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ If defined in both the `TrainResult` and the `EvalResult` the one in the `EvalResult` will take precedence. .. code-block:: python def training_step(...): return TrainResult(loss, checkpoint_on=metric, early_stop_on=metric) # metric_a and metric_b will be used for the callbacks and NOT metric def validation_step(...): return EvalResult(checkpoint_on=metric_a, early_stop_on=metric_b) Eval logging ^^^^^^^^^^^^ Logging has the same behavior as `TrainResult` but the logging defaults are different: .. code-block:: python # TrainResult logs by default at each step only TrainResult().log('val', val, on_step=True, on_epoch=False, logger=True, prog_bar=False, reduce_fx=torch.mean) # EvalResult logs by default at the end of an epoch only EvalResult().log('val', val, on_step=False, on_epoch=True, logger=True, prog_bar=False, reduce_fx=torch.mean) Val/Test loop ^^^^^^^^^^^^^ Eval result can be used in both `test_step` and `validation_step`. Sync across devices (v) ^^^^^^^^^^^^^^^^^^^^^^^ When training on multiple GPUs/CPUs/TPU cores, calculate the global mean of a logged metric as follows: .. code-block:: python result.log('val_loss', loss, sync_dist=True) EvalResult API ^^^^^^^^^^^^^^^ .. autoclass:: pytorch_lightning.core.step_result.EvalResult :noindex: