import collections import torch from lightning_lite.utilities.optimizer import _optimizer_to_device def test_optimizer_to_device(): class TestOptimizer(torch.optim.SGD): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.state["dummy"] = torch.tensor(0) layer = torch.nn.Linear(32, 2) opt = TestOptimizer(layer.parameters(), lr=0.1) _optimizer_to_device(opt, "cpu") if torch.cuda.is_available(): _optimizer_to_device(opt, "cuda") assert_opt_parameters_on_device(opt, "cuda") def assert_opt_parameters_on_device(opt, device: str): for param in opt.state.values(): # Not sure there are any global tensors in the state dict if isinstance(param, torch.Tensor): assert param.data.device.type == device elif isinstance(param, collections.Mapping): for subparam in param.values(): if isinstance(subparam, torch.Tensor): assert param.data.device.type == device