# Python package # Create and test a Python package on multiple Python versions. # Add steps that analyze code, save the dist with the build record, publish to a PyPI-compatible index, and more: # https://docs.microsoft.com/azure/devops/pipelines/languages/python trigger: tags: include: - '*' branches: include: - "master" - "release/*" - "refs/tags/*" paths: include: - ".azure/gpu-tests-lite.yml" - "requirements/lite/**" - "src/lightning_lite/**" - "tests/tests_lite/**" - "tests/tests_pytorch/run_standalone_tests.sh" - "tests/tests_lite/run_standalone_tests.sh" # a symlink to the one above pr: - "master" - "release/*" jobs: - job: testing # how long to run the job before automatically cancelling timeoutInMinutes: "20" # how much time to give 'run always even if cancelled tasks' before stopping them cancelTimeoutInMinutes: "2" pool: azure-jirka-spot container: image: "pytorchlightning/pytorch_lightning:base-cuda-py3.9-torch1.12-cuda11.6.1" # default shm size is 64m. Increase it to avoid: # 'Error while creating shared memory: unhandled system error, NCCL version 2.7.8' options: "--runtime=nvidia -e NVIDIA_VISIBLE_DEVICES=all --shm-size=512m" workspace: clean: all steps: - bash: | lspci | egrep 'VGA|3D' whereis nvidia nvidia-smi which python && which pip python --version pip --version pip list displayName: 'Image info & NVIDIA' - bash: | set -e TORCH_VERSION=$(python -c "import torch; print(torch.__version__.split('+')[0])") CUDA_VERSION_MM=$(python -c "import torch ; print(''.join(map(str, torch.version.cuda.split('.')[:2])))") python ./requirements/pytorch/adjust-versions.py requirements/lite/base.txt ${PYTORCH_VERSION} pip install -e .[strategies] --find-links https://download.pytorch.org/whl/cu${CUDA_VERSION_MM}/torch_stable.html pip install --requirement requirements/pytorch/devel.txt --find-links https://download.pytorch.org/whl/cu${CUDA_VERSION_MM}/torch_stable.html pip list env: PACKAGE_NAME: pytorch FREEZE_REQUIREMENTS: 1 displayName: 'Install dependencies' - bash: | set -e python requirements/collect_env_details.py python -c "import torch ; mgpu = torch.cuda.device_count() ; assert mgpu >= 2, f'GPU: {mgpu}'" displayName: 'Env details' - bash: python -m coverage run --source lightning_lite -m pytest --ignore benchmarks -v --junitxml=$(Build.StagingDirectory)/test-results.xml --durations=50 env: PL_RUN_CUDA_TESTS: "1" workingDirectory: tests/tests_lite displayName: 'Testing: Lite standard' timeoutInMinutes: "10" - bash: bash run_standalone_tests.sh workingDirectory: tests/tests_lite env: PL_RUN_CUDA_TESTS: "1" PL_STANDALONE_TESTS_SOURCE: "lightning_lite" displayName: 'Testing: Lite standalone tests' timeoutInMinutes: "10" - bash: | python -m coverage report python -m coverage xml python -m coverage html python -m codecov --token=$(CODECOV_TOKEN) --commit=$(Build.SourceVersion) --flags=gpu,pytest --name="GPU-coverage" --env=linux,azure ls -l workingDirectory: tests/tests_lite displayName: 'Statistics' - task: PublishTestResults@2 displayName: 'Publish test results' inputs: testResultsFiles: '$(Build.StagingDirectory)/test-results.xml' testRunTitle: '$(Agent.OS) - $(Build.DefinitionName) - Python $(python.version)' condition: succeededOrFailed()