# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from typing import Union, Any, List, Optional, MutableSequence from pytorch_lightning.utilities.exceptions import MisconfigurationException def determine_root_gpu_device(gpus: List[int]) -> Optional[int]: """ Args: gpus: non-empty list of ints representing which gpus to use Returns: designated root GPU device id """ if gpus is None: return None assert isinstance(gpus, list), "gpus should be a list" assert len(gpus) > 0, "gpus should be a non empty list" # set root gpu root_gpu = gpus[0] return root_gpu def parse_gpu_ids(gpus: Optional[Union[int, str, List[int]]]) -> Optional[List[int]]: """ Parses the GPU ids given in the format as accepted by the :class:`~pytorch_lightning.trainer.Trainer`. Args: gpus: An int -1 or string '-1' indicate that all available GPUs should be used. A list of ints or a string containing list of comma separated integers indicates specific GPUs to use. An int 0 means that no GPUs should be used. Any int N > 0 indicates that GPUs [0..N) should be used. Returns: a list of gpus to be used or ``None`` if no GPUs were requested If no GPUs are available but the value of gpus variable indicates request for GPUs then a MisconfigurationException is raised. """ # nothing was passed into the GPUs argument if callable(gpus): return None # Check that gpus param is None, Int, String or List _check_data_type(gpus) # Handle the case when no gpus are requested if gpus is None or isinstance(gpus, int) and gpus == 0: return None # We know user requested GPUs therefore if some of the # requested GPUs are not available an exception is thrown. gpus = _normalize_parse_gpu_string_input(gpus) gpus = _normalize_parse_gpu_input_to_list(gpus) if not gpus: raise MisconfigurationException("GPUs requested but none are available.") gpus = _sanitize_gpu_ids(gpus) return gpus def parse_tpu_cores(tpu_cores: Union[int, str, List]) -> Optional[Union[List[int], int]]: """ Parses the tpu_cores given in the format as accepted by the :class:`~pytorch_lightning.trainer.Trainer`. Args: tpu_cores: An int 1 or string '1' indicate that 1 core with multi-processing should be used An int 8 or string '8' indicate that all 8 cores with multi-processing should be used A list of int or a string containing list of comma separated integer indicates specific TPU core to use. Returns: a list of tpu_cores to be used or ``None`` if no TPU cores were requested """ if callable(tpu_cores): return None _check_data_type(tpu_cores) if isinstance(tpu_cores, str): tpu_cores = _parse_tpu_cores_str(tpu_cores.strip()) if not _tpu_cores_valid(tpu_cores): raise MisconfigurationException("`tpu_cores` can only be 1, 8 or [<1-8>]") return tpu_cores def _normalize_parse_gpu_string_input(s: Union[int, str, List[int]]) -> Union[int, List[int]]: if isinstance(s, str): if s == '-1': return -1 else: return [int(x.strip()) for x in s.split(',') if len(x) > 0] else: return s def _sanitize_gpu_ids(gpus: List[int]) -> List[int]: """ Checks that each of the GPUs in the list is actually available. Raises a MisconfigurationException if any of the GPUs is not available. Args: gpus: list of ints corresponding to GPU indices Returns: unmodified gpus variable """ all_available_gpus = _get_all_available_gpus() for gpu in gpus: if gpu not in all_available_gpus: raise MisconfigurationException(f""" You requested GPUs: {gpus} But your machine only has: {all_available_gpus} """) return gpus def _normalize_parse_gpu_input_to_list(gpus: Union[int, List[int]]) -> Optional[List[int]]: assert gpus is not None if isinstance(gpus, MutableSequence): return list(gpus) # must be an int if not gpus: # gpus==0 return None if gpus == -1: return _get_all_available_gpus() return list(range(gpus)) def _get_all_available_gpus() -> List[int]: """ Returns: a list of all available gpus """ return list(range(torch.cuda.device_count())) def _check_data_type(device_ids: Any) -> None: """ Checks that the device_ids argument is one of: None, Int, String or List. Raises a MisconfigurationException otherwise. Args: device_ids: gpus/tpu_cores parameter as passed to the Trainer """ if device_ids is not None and \ (not isinstance(device_ids, (int, str, MutableSequence)) or isinstance(device_ids, bool)): raise MisconfigurationException("Device ID's (GPU/TPU) must be int, string or sequence of ints or None.") def _tpu_cores_valid(tpu_cores): # allow 1 or 8 cores if tpu_cores in (1, 8, None): return True # allow picking 1 of 8 indexes if isinstance(tpu_cores, (list, tuple, set)): has_1_tpu_idx = len(tpu_cores) == 1 is_valid_tpu_idx = tpu_cores[0] in range(1, 9) is_valid_tpu_core_choice = has_1_tpu_idx and is_valid_tpu_idx return is_valid_tpu_core_choice return False def _parse_tpu_cores_str(tpu_cores): if tpu_cores in ('1', '8'): tpu_cores = int(tpu_cores) else: tpu_cores = [int(x.strip()) for x in tpu_cores.split(',') if len(x) > 0] return tpu_cores