# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math import functools from abc import ABC, abstractmethod from typing import Any, Callable, Optional, Union from collections.abc import Mapping, Sequence from collections import namedtuple import torch from torch import nn from pytorch_lightning.metrics.metric import Metric from pytorch_lightning.metrics.functional.reduction import class_reduce from pytorch_lightning.metrics.classification.precision_recall import _input_format class Fbeta(Metric): """ Computes f_beta metric. Works with binary, multiclass, and multilabel data. Accepts logits from a model output or integer class values in prediction. Works with multi-dimensional preds and target. Forward accepts - ``preds`` (float or long tensor): ``(N, ...)`` or ``(N, C, ...)`` where C is the number of classes - ``target`` (long tensor): ``(N, ...)`` If preds and target are the same shape and preds is a float tensor, we use the ``self.threshold`` argument. This is the case for binary and multi-label logits. If preds has an extra dimension as in the case of multi-class scores we perform an argmax on ``dim=1``. Args: num_classes: Number of classes in the dataset. beta: Beta coefficient in the F measure. threshold: Threshold value for binary or multi-label logits. default: 0.5 average: * `'micro'` computes metric globally * `'macro'` computes metric for each class and then takes the mean multilabel: If predictions are from multilabel classification. compute_on_step: Forward only calls ``update()`` and return None if this is set to False. default: True dist_sync_on_step: Synchronize metric state across processes at each ``forward()`` before returning the value at the step. default: False process_group: Specify the process group on which synchronization is called. default: None (which selects the entire world) Example: >>> from pytorch_lightning.metrics import Fbeta >>> target = torch.tensor([0, 1, 2, 0, 1, 2]) >>> preds = torch.tensor([0, 2, 1, 0, 0, 1]) >>> f_beta = Fbeta(num_classes=3, beta=0.5) >>> f_beta(preds, target) tensor(0.3333) """ def __init__( self, num_classes: int = 1, beta: float = 1., threshold: float = 0.5, average: str = 'micro', multilabel: bool = False, compute_on_step: bool = True, dist_sync_on_step: bool = False, process_group: Optional[Any] = None, ): super().__init__( compute_on_step=compute_on_step, dist_sync_on_step=dist_sync_on_step, process_group=process_group, ) self.num_classes = num_classes self.beta = beta self.threshold = threshold self.average = average self.multilabel = multilabel assert self.average in ('micro', 'macro'), \ "average passed to the function must be either `micro` or `macro`" self.add_state("true_positives", default=torch.zeros(num_classes), dist_reduce_fx="sum") self.add_state("predicted_positives", default=torch.zeros(num_classes), dist_reduce_fx="sum") self.add_state("actual_positives", default=torch.zeros(num_classes), dist_reduce_fx="sum") def update(self, preds: torch.Tensor, target: torch.Tensor): """ Update state with predictions and targets. Args: preds: Predictions from model target: Ground truth values """ preds, target = _input_format(self.num_classes, preds, target, self.threshold, self.multilabel) self.true_positives += torch.sum(preds * target, dim=1) self.predicted_positives += torch.sum(preds, dim=1) self.actual_positives += torch.sum(target, dim=1) def compute(self): """ Computes accuracy over state. """ if self.average == 'micro': precision = self.true_positives.sum().float() / (self.predicted_positives.sum()) recall = self.true_positives.sum().float() / (self.actual_positives.sum()) elif self.average == 'macro': precision = self.true_positives.float() / (self.predicted_positives) recall = self.true_positives.float() / (self.actual_positives) num = (1 + self.beta ** 2) * precision * recall denom = self.beta ** 2 * precision + recall return class_reduce(num=num, denom=denom, weights=None, class_reduction='macro')