# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from abc import ABC from typing import List, Tuple import torch from torch import optim from torch.optim.optimizer import Optimizer from pytorch_lightning.core.lightning import LightningModule from pytorch_lightning.utilities import rank_zero_warn class TrainerOptimizersMixin(ABC): def init_optimizers( self, model: LightningModule ) -> Tuple[List, List, List]: optim_conf = model.configure_optimizers() if optim_conf is None: rank_zero_warn('`LightningModule.configure_optimizers` returned `None`, ' 'this fit will run with no optimizer', UserWarning) optim_conf = _MockOptimizer() # single output, single optimizer if isinstance(optim_conf, Optimizer): return [optim_conf], [], [] # two lists, optimizer + lr schedulers elif isinstance(optim_conf, (list, tuple)) and len(optim_conf) == 2 \ and isinstance(optim_conf[0], list): optimizers, lr_schedulers = optim_conf lr_schedulers = self.configure_schedulers(lr_schedulers) return optimizers, lr_schedulers, [] # single dictionary elif isinstance(optim_conf, dict): optimizer = optim_conf["optimizer"] lr_scheduler = optim_conf.get("lr_scheduler", []) if lr_scheduler: lr_schedulers = self.configure_schedulers([lr_scheduler]) else: lr_schedulers = [] return [optimizer], lr_schedulers, [] # multiple dictionaries elif isinstance(optim_conf, (list, tuple)) and isinstance(optim_conf[0], dict): optimizers = [opt_dict["optimizer"] for opt_dict in optim_conf] # take only lr wif exists and ot they are defined - not None lr_schedulers = [ opt_dict["lr_scheduler"] for opt_dict in optim_conf if opt_dict.get("lr_scheduler") ] # take only freq wif exists and ot they are defined - not None optimizer_frequencies = [ opt_dict["frequency"] for opt_dict in optim_conf if opt_dict.get("frequency") is not None ] # clean scheduler list if lr_schedulers: lr_schedulers = self.configure_schedulers(lr_schedulers) # assert that if frequencies are present, they are given for all optimizers if optimizer_frequencies and len(optimizer_frequencies) != len(optimizers): raise ValueError("A frequency must be given to each optimizer.") return optimizers, lr_schedulers, optimizer_frequencies # single list or tuple, multiple optimizer elif isinstance(optim_conf, (list, tuple)): return list(optim_conf), [], [] # unknown configuration else: raise ValueError( 'Unknown configuration for model optimizers.' ' Output from `model.configure_optimizers()` should either be:' ' * single output, single `torch.optim.Optimizer`' ' * single output, list of `torch.optim.Optimizer`' ' * single output, a dictionary with `optimizer` key (`torch.optim.Optimizer`)' ' and an optional `lr_scheduler` key (`torch.optim.lr_scheduler`)' ' * two outputs, first being a list of `torch.optim.Optimizer` second being' ' a list of `torch.optim.lr_scheduler`' ' * multiple outputs, dictionaries as described with an optional `frequency` key (int)') def configure_schedulers(self, schedulers: list): # Convert each scheduler into dict structure with relevant information lr_schedulers = [] default_config = {'interval': 'epoch', # default every epoch 'frequency': 1, # default every epoch/batch 'reduce_on_plateau': False, # most often not ReduceLROnPlateau scheduler 'monitor': 'val_loss'} # default value to monitor for ReduceLROnPlateau for scheduler in schedulers: if isinstance(scheduler, dict): if 'scheduler' not in scheduler: raise ValueError('Lr scheduler should have key `scheduler`', ' with item being a lr scheduler') scheduler['reduce_on_plateau'] = isinstance( scheduler['scheduler'], optim.lr_scheduler.ReduceLROnPlateau) lr_schedulers.append({**default_config, **scheduler}) elif isinstance(scheduler, optim.lr_scheduler.ReduceLROnPlateau): lr_schedulers.append({**default_config, 'scheduler': scheduler, 'reduce_on_plateau': True}) elif isinstance(scheduler, optim.lr_scheduler._LRScheduler): lr_schedulers.append({**default_config, 'scheduler': scheduler}) else: raise ValueError(f'Input {scheduler} to lr schedulers ' 'is a invalid input.') return lr_schedulers def reinit_scheduler_properties(self, optimizers: list, schedulers: list): # Reinitialize optimizer.step properties added by schedulers for scheduler in schedulers: scheduler = scheduler['scheduler'] for optimizer in optimizers: # check that we dont mix users optimizers and schedulers if scheduler.optimizer == optimizer: # Find the mro belonging to the base lr scheduler class for i, mro in enumerate(scheduler.__class__.__mro__): if ( mro == optim.lr_scheduler._LRScheduler or mro == optim.lr_scheduler.ReduceLROnPlateau ): idx = i state = scheduler.state_dict() else: state = None scheduler.__class__.__mro__[idx].__init__(scheduler, optimizer) if state is not None: scheduler.load_state_dict(state) class _MockOptimizer(Optimizer): """The `_MockOptimizer` will be used inplace of an optimizer in the event that `None` is returned from `configure_optimizers`. """ def __init__(self): super().__init__([torch.zeros(1)], {}) def add_param_group(self, param_group): pass # Do Nothing def load_state_dict(self, state_dict): pass # Do Nothing def state_dict(self): return {} # Return Empty def step(self, closure=None): if closure is not None: closure() def zero_grad(self): pass # Do Nothing def __repr__(self): return 'No Optimizer'