# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from abc import ABC from pytorch_lightning import _logger as log from pytorch_lightning.utilities import APEX_AVAILABLE, NATIVE_AMP_AVALAIBLE, rank_zero_warn, AMPType class TrainerAMPMixin(ABC): # this is just a summary on variables used in this abstract class, # the proper values/initialisation should be done in child class precision: int def _setup_amp_backend(self, amp_type: str): if self.precision != 16: # no AMP requested, so we can leave now return amp_type = amp_type.lower() assert amp_type in ('native', 'apex'), f'Unsupported amp type {amp_type}' if amp_type == 'native': if not NATIVE_AMP_AVALAIBLE: rank_zero_warn('You have asked for native AMP but your PyTorch version does not support it.' ' Consider upgrading with `pip install torch>=1.6`.' ' We will attempt to use NVIDIA Apex for this session.') amp_type = 'apex' else: log.info('Using native 16bit precision.') self.amp_backend = AMPType.NATIVE if amp_type == 'apex': if not APEX_AVAILABLE: rank_zero_warn('You have asked for Apex AMP but you have not installed it yet.' ' Install apex first using this guide: https://github.com/NVIDIA/apex#linux') else: log.info('Using APEX 16bit precision.') self.amp_backend = AMPType.APEX if not self.amp_backend: raise ModuleNotFoundError( f'You have asked for AMP support {amp_type}, but there is no support on your side yet.' f' Consider installing torch >= 1.6 or NVIDIA Apex.' ) @property def use_amp(self) -> bool: return self.precision == 16