import logging import os import torch import tests.utils as tutils from pytorch_lightning import Trainer from pytorch_lightning.callbacks import ModelCheckpoint from pytorch_lightning.testing import LightningTestModel def test_running_test_pretrained_model_ddp(tmpdir): """Verify `test()` on pretrained model.""" if not tutils.can_run_gpu_test(): return tutils.reset_seed() tutils.set_random_master_port() hparams = tutils.get_hparams() model = LightningTestModel(hparams) # exp file to get meta logger = tutils.get_test_tube_logger(tmpdir, False) # exp file to get weights checkpoint = tutils.init_checkpoint_callback(logger) trainer_options = dict( show_progress_bar=False, max_num_epochs=1, train_percent_check=0.4, val_percent_check=0.2, checkpoint_callback=checkpoint, logger=logger, gpus=[0, 1], distributed_backend='ddp' ) # fit model trainer = Trainer(**trainer_options) result = trainer.fit(model) exp = logger.experiment logging.info(os.listdir(exp.get_data_path(exp.name, exp.version))) # correct result and ok accuracy assert result == 1, 'training failed to complete' pretrained_model = tutils.load_model(logger.experiment, trainer.checkpoint_callback.filepath, module_class=LightningTestModel) # run test set new_trainer = Trainer(**trainer_options) new_trainer.test(pretrained_model) for dataloader in model.test_dataloader(): tutils.run_prediction(dataloader, pretrained_model) def test_running_test_pretrained_model(tmpdir): tutils.reset_seed() """Verify test() on pretrained model""" hparams = tutils.get_hparams() model = LightningTestModel(hparams) # logger file to get meta logger = tutils.get_test_tube_logger(tmpdir, False) # logger file to get weights checkpoint = tutils.init_checkpoint_callback(logger) trainer_options = dict( show_progress_bar=False, max_num_epochs=4, train_percent_check=0.4, val_percent_check=0.2, checkpoint_callback=checkpoint, logger=logger ) # fit model trainer = Trainer(**trainer_options) result = trainer.fit(model) # correct result and ok accuracy assert result == 1, 'training failed to complete' pretrained_model = tutils.load_model( logger.experiment, trainer.checkpoint_callback.filepath, module_class=LightningTestModel ) new_trainer = Trainer(**trainer_options) new_trainer.test(pretrained_model) # test we have good test accuracy tutils.assert_ok_test_acc(new_trainer) def test_load_model_from_checkpoint(tmpdir): tutils.reset_seed() """Verify test() on pretrained model""" hparams = tutils.get_hparams() model = LightningTestModel(hparams) trainer_options = dict( show_progress_bar=False, max_num_epochs=1, train_percent_check=0.4, val_percent_check=0.2, checkpoint_callback=True, logger=False, default_save_path=tmpdir, ) # fit model trainer = Trainer(**trainer_options) result = trainer.fit(model) # correct result and ok accuracy assert result == 1, 'training failed to complete' pretrained_model = LightningTestModel.load_from_checkpoint( os.path.join(trainer.checkpoint_callback.filepath, "_ckpt_epoch_0.ckpt") ) # test that hparams loaded correctly for k, v in vars(hparams).items(): assert getattr(pretrained_model.hparams, k) == v new_trainer = Trainer(**trainer_options) new_trainer.test(pretrained_model) # test we have good test accuracy tutils.assert_ok_test_acc(new_trainer) def test_running_test_pretrained_model_dp(tmpdir): tutils.reset_seed() """Verify test() on pretrained model""" if not tutils.can_run_gpu_test(): return hparams = tutils.get_hparams() model = LightningTestModel(hparams) # logger file to get meta logger = tutils.get_test_tube_logger(tmpdir, False) # logger file to get weights checkpoint = tutils.init_checkpoint_callback(logger) trainer_options = dict( show_progress_bar=True, max_num_epochs=1, train_percent_check=0.4, val_percent_check=0.2, checkpoint_callback=checkpoint, logger=logger, gpus=[0, 1], distributed_backend='dp' ) # fit model trainer = Trainer(**trainer_options) result = trainer.fit(model) # correct result and ok accuracy assert result == 1, 'training failed to complete' pretrained_model = tutils.load_model(logger.experiment, trainer.checkpoint_callback.filepath, module_class=LightningTestModel) new_trainer = Trainer(**trainer_options) new_trainer.test(pretrained_model) # test we have good test accuracy tutils.assert_ok_test_acc(new_trainer) def test_dp_resume(tmpdir): """Make sure DP continues training correctly.""" if not tutils.can_run_gpu_test(): return tutils.reset_seed() hparams = tutils.get_hparams() model = LightningTestModel(hparams) trainer_options = dict( show_progress_bar=True, max_num_epochs=2, gpus=2, distributed_backend='dp', ) # get logger logger = tutils.get_test_tube_logger(tmpdir, debug=False) # exp file to get weights # logger file to get weights checkpoint = tutils.init_checkpoint_callback(logger) # add these to the trainer options trainer_options['logger'] = logger trainer_options['checkpoint_callback'] = checkpoint # fit model trainer = Trainer(**trainer_options) trainer.is_slurm_managing_tasks = True result = trainer.fit(model) # track epoch before saving real_global_epoch = trainer.current_epoch # correct result and ok accuracy assert result == 1, 'amp + dp model failed to complete' # --------------------------- # HPC LOAD/SAVE # --------------------------- # save trainer.hpc_save(tmpdir, logger) # init new trainer new_logger = tutils.get_test_tube_logger(tmpdir, version=logger.version) trainer_options['logger'] = new_logger trainer_options['checkpoint_callback'] = ModelCheckpoint(tmpdir) trainer_options['train_percent_check'] = 0.2 trainer_options['val_percent_check'] = 0.2 trainer_options['max_num_epochs'] = 1 new_trainer = Trainer(**trainer_options) # set the epoch start hook so we can predict before the model does the full training def assert_good_acc(): assert new_trainer.current_epoch == real_global_epoch and new_trainer.current_epoch > 0 # if model and state loaded correctly, predictions will be good even though we # haven't trained with the new loaded model dp_model = new_trainer.model dp_model.eval() dataloader = trainer.get_train_dataloader() tutils.run_prediction(dataloader, dp_model, dp=True) # new model model = LightningTestModel(hparams) model.on_sanity_check_start = assert_good_acc # fit new model which should load hpc weights new_trainer.fit(model) # test freeze on gpu model.freeze() model.unfreeze() def test_cpu_restore_training(tmpdir): """Verify continue training session on CPU.""" tutils.reset_seed() hparams = tutils.get_hparams() model = LightningTestModel(hparams) # logger file to get meta test_logger_version = 10 logger = tutils.get_test_tube_logger(tmpdir, False, version=test_logger_version) trainer_options = dict( max_num_epochs=2, val_check_interval=0.50, val_percent_check=0.2, train_percent_check=0.2, logger=logger, checkpoint_callback=ModelCheckpoint(tmpdir) ) # fit model trainer = Trainer(**trainer_options) result = trainer.fit(model) real_global_epoch = trainer.current_epoch # traning complete assert result == 1, 'amp + ddp model failed to complete' # wipe-out trainer and model # retrain with not much data... this simulates picking training back up after slurm # we want to see if the weights come back correctly new_logger = tutils.get_test_tube_logger(tmpdir, False, version=test_logger_version) trainer_options = dict( max_num_epochs=2, val_check_interval=0.50, val_percent_check=0.2, train_percent_check=0.2, logger=new_logger, checkpoint_callback=ModelCheckpoint(tmpdir), ) trainer = Trainer(**trainer_options) model = LightningTestModel(hparams) # set the epoch start hook so we can predict before the model does the full training def assert_good_acc(): assert trainer.current_epoch == real_global_epoch assert trainer.current_epoch >= 0 # if model and state loaded correctly, predictions will be good even though we # haven't trained with the new loaded model trainer.model.eval() for dataloader in trainer.get_val_dataloaders(): tutils.run_prediction(dataloader, trainer.model) model.on_sanity_check_start = assert_good_acc # by calling fit again, we trigger training, loading weights from the cluster # and our hook to predict using current model before any more weight updates trainer.fit(model) def test_model_saving_loading(tmpdir): """Tests use case where trainer saves the model, and user loads it from tags independently.""" tutils.reset_seed() hparams = tutils.get_hparams() model = LightningTestModel(hparams) # logger file to get meta logger = tutils.get_test_tube_logger(tmpdir, False) trainer_options = dict( max_num_epochs=1, logger=logger, checkpoint_callback=ModelCheckpoint(tmpdir) ) # fit model trainer = Trainer(**trainer_options) result = trainer.fit(model) # traning complete assert result == 1, 'amp + ddp model failed to complete' # make a prediction for dataloader in model.test_dataloader(): for batch in dataloader: break x, y = batch x = x.view(x.size(0), -1) # generate preds before saving model model.eval() pred_before_saving = model(x) # save model new_weights_path = os.path.join(tmpdir, 'save_test.ckpt') trainer.save_checkpoint(new_weights_path) # load new model tags_path = logger.experiment.get_data_path(logger.experiment.name, logger.experiment.version) tags_path = os.path.join(tags_path, 'meta_tags.csv') model_2 = LightningTestModel.load_from_metrics(weights_path=new_weights_path, tags_csv=tags_path) model_2.eval() # make prediction # assert that both predictions are the same new_pred = model_2(x) assert torch.all(torch.eq(pred_before_saving, new_pred)).item() == 1 # if __name__ == '__main__': # pytest.main([__file__])