:orphan: ################################# Validate and test a model (basic) ################################# **Audience**: Users who want to add a validation loop to avoid overfitting ---- *************** Add a test loop *************** To make sure a model can generalize to an unseen dataset (ie: to publish a paper or in a production environment) a dataset is normally split into two parts, the *train* split and the *test* split. The test set is **NOT** used during training, it is **ONLY** used once the model has been trained to see how the model will do in the real-world. ---- Find the train and test splits ============================== Datasets come with two splits. Refer to the dataset documentation to find the *train* and *test* splits. .. code-block:: python import torch.utils.data as data from torchvision import datasets import torchvision.transforms as transforms # Load data sets transform = transforms.ToTensor() train_set = datasets.MNIST(root="MNIST", download=True, train=True, transform=transform) test_set = datasets.MNIST(root="MNIST", download=True, train=False, transform=transform) ---- Define the test loop ==================== To add a test loop, implement the **test_step** method of the LightningModule .. code:: python class LitAutoEncoder(pl.LightningModule): def training_step(self, batch, batch_idx): ... def test_step(self, batch, batch_idx): # this is the test loop x, y = batch x = x.view(x.size(0), -1) z = self.encoder(x) x_hat = self.decoder(z) test_loss = F.mse_loss(x_hat, x) self.log("test_loss", test_loss) ---- Train with the test loop ======================== Once the model has finished training, call **.test** .. code-block:: python from torch.utils.data import DataLoader # initialize the Trainer trainer = Trainer() # test the model trainer.test(model, dataloaders=DataLoader(test_set)) ---- ********************* Add a validation loop ********************* During training, it's common practice to use a small portion of the train split to determine when the model has finished training. ---- Split the training data ======================= As a rule of thumb, we use 20% of the training set as the **validation set**. This number varies from dataset to dataset. .. code-block:: python # use 20% of training data for validation train_set_size = int(len(train_set) * 0.8) valid_set_size = len(train_set) - train_set_size # split the train set into two seed = torch.Generator().manual_seed(42) train_set, valid_set = data.random_split(train_set, [train_set_size, valid_set_size], generator=seed) ---- Define the validation loop ========================== To add a validation loop, implement the **validation_step** method of the LightningModule .. code:: python class LitAutoEncoder(pl.LightningModule): def training_step(self, batch, batch_idx): ... def validation_step(self, batch, batch_idx): # this is the validation loop x, y = batch x = x.view(x.size(0), -1) z = self.encoder(x) x_hat = self.decoder(z) val_loss = F.mse_loss(x_hat, x) self.log("val_loss", val_loss) ---- Train with the validation loop ============================== To run the validation loop, pass in the validation set to **.fit** .. code-block:: python from torch.utils.data import DataLoader train_loader = DataLoader(train_set) valid_loader = DataLoader(valid_set) model = LitAutoEncoder(...) # train with both splits trainer = pl.Trainer() trainer.fit(model, train_loader, valid_loader)