.. testsetup:: * from pytorch_lightning.trainer.trainer import Trainer Debugging ========= The following are flags that make debugging much easier. Fast dev run ------------ This flag runs a "unit test" by running 1 training batch and 1 validation batch. The point is to detect any bugs in the training/validation loop without having to wait for a full epoch to crash. (See: :paramref:`~pytorch_lightning.trainer.trainer.Trainer.fast_dev_run` argument of :class:`~pytorch_lightning.trainer.trainer.Trainer`) .. testcode:: trainer = Trainer(fast_dev_run=True) Inspect gradient norms ---------------------- Logs (to a logger), the norm of each weight matrix. (See: :paramref:`~pytorch_lightning.trainer.trainer.Trainer.track_grad_norm` argument of :class:`~pytorch_lightning.trainer.trainer.Trainer`) .. testcode:: # the 2-norm trainer = Trainer(track_grad_norm=2) Log GPU usage ------------- Logs (to a logger) the GPU usage for each GPU on the master machine. (See: :paramref:`~pytorch_lightning.trainer.trainer.Trainer.log_gpu_memory` argument of :class:`~pytorch_lightning.trainer.trainer.Trainer`) .. testcode:: trainer = Trainer(log_gpu_memory=True) Make model overfit on subset of data ------------------------------------ A good debugging technique is to take a tiny portion of your data (say 2 samples per class), and try to get your model to overfit. If it can't, it's a sign it won't work with large datasets. (See: :paramref:`~pytorch_lightning.trainer.trainer.Trainer.overfit_pct` argument of :class:`~pytorch_lightning.trainer.trainer.Trainer`) .. testcode:: trainer = Trainer(overfit_pct=0.01) Print the parameter count by layer ---------------------------------- Whenever the .fit() function gets called, the Trainer will print the weights summary for the lightningModule. To disable this behavior, turn off this flag: (See: :paramref:`~pytorch_lightning.trainer.trainer.Trainer.weights_summary` argument of :class:`~pytorch_lightning.trainer.trainer.Trainer`) .. testcode:: trainer = Trainer(weights_summary=None) Set the number of validation sanity steps ----------------------------------------- Lightning runs a few steps of validation in the beginning of training. This avoids crashing in the validation loop sometime deep into a lengthy training loop. (See: :paramref:`~pytorch_lightning.trainer.trainer.Trainer.num_sanity_val_steps` argument of :class:`~pytorch_lightning.trainer.trainer.Trainer`) .. testcode:: # DEFAULT trainer = Trainer(num_sanity_val_steps=5)