# Python package # Create and test a Python package on multiple Python versions. # Add steps that analyze code, save the dist with the build record, publish to a PyPI-compatible index, and more: # https://docs.microsoft.com/azure/devops/pipelines/languages/python trigger: tags: include: - '*' branches: include: - "master" - "release/*" - "refs/tags/*" pr: branches: include: - "master" - "release/*" paths: include: - ".azure/gpu-benchmark.yml" - "tests/tests_pytorch/benchmarks/**" - "requirements/pytorch/**" exclude: - "requirements/*/docs.txt" - "*.md" - "**/*.md" schedules: - cron: "0 0 * * *" # At the end of every day displayName: Daily midnight benchmark branches: include: - "master" jobs: - job: benchmarks timeoutInMinutes: "90" cancelTimeoutInMinutes: "2" pool: lit-rtx-3090 variables: DEVICES: $( python -c 'print("$(Agent.Name)".split("_")[-1])' ) container: image: "pytorchlightning/pytorch_lightning:base-cuda-py3.9-torch1.13-cuda11.6.1" options: "--gpus=all --shm-size=32g" workspace: clean: all steps: - bash: | echo "##vso[task.setvariable variable=CUDA_VISIBLE_DEVICES]$(DEVICES)" cuda_ver=$(python -c "import torch ; print(''.join(map(str, torch.version.cuda.split('.')[:2])))") echo "##vso[task.setvariable variable=TORCH_URL]https://download.pytorch.org/whl/cu${cuda_ver}/torch_stable.html" displayName: 'set env. vars' - bash: | echo $CUDA_VISIBLE_DEVICES echo $TORCH_URL lspci | egrep 'VGA|3D' whereis nvidia nvidia-smi which python && which pip python --version pip --version pip list displayName: 'Image info & NVIDIA' - bash: pip install -e .[dev] --find-links ${TORCH_URL} env: PACKAGE_NAME: "pytorch" FREEZE_REQUIREMENTS: "1" displayName: 'Install package' - bash: | set -e pip list python requirements/collect_env_details.py python -c "import torch ; mgpu = torch.cuda.device_count() ; assert mgpu == 2, f'GPU: {mgpu}'" displayName: 'Env details' - bash: python -m pytest benchmarks -v --durations=0 env: PL_RUNNING_BENCHMARKS: "1" PL_RUN_CUDA_TESTS: "1" workingDirectory: tests/tests_pytorch displayName: 'Testing: PyTorch benchmarks'