:orphan: .. testsetup:: * :skipif: not _JSONARGPARSE_AVAILABLE import torch from unittest import mock from typing import List import pytorch_lightning.cli as pl_cli from pytorch_lightning import LightningModule, LightningDataModule, Trainer, Callback class NoFitTrainer(Trainer): def fit(self, *_, **__): pass class LightningCLI(pl_cli.LightningCLI): def __init__(self, *args, trainer_class=NoFitTrainer, run=False, **kwargs): super().__init__(*args, trainer_class=trainer_class, run=run, **kwargs) class MyModel(LightningModule): def __init__( self, encoder_layers: int = 12, decoder_layers: List[int] = [2, 4], batch_size: int = 8, ): pass class MyDataModule(LightningDataModule): def __init__(self, batch_size: int = 8): self.num_classes = 5 mock_argv = mock.patch("sys.argv", ["any.py"]) mock_argv.start() .. testcleanup:: * mock_argv.stop() ################################################# Configure hyperparameters from the CLI (Advanced) ################################################# ********************************* Customize arguments by subcommand ********************************* To customize arguments by subcommand, pass the config *before* the subcommand: .. code-block:: bash $ python main.py [before] [subcommand] [after] $ python main.py ... fit ... For example, here we set the Trainer argument [max_steps = 100] for the full training routine and [max_steps = 10] for testing: .. code-block:: bash # config.yaml fit: trainer: max_steps: 100 test: trainer: max_epochs: 10 now you can toggle this behavior by subcommand: .. code-block:: bash # full routine with max_steps = 100 $ python main.py --config config.yaml fit # test only with max_epochs = 10 $ python main.py --config config.yaml test ---- *************************** Run from cloud yaml configs *************************** For certain enterprise workloads, Lightning CLI supports running from hosted configs: .. code-block:: bash $ python main.py [subcommand] --config s3://bucket/config.yaml For more options, refer to :doc:`Remote filesystems <../common/remote_fs>`. ---- ************************************** Use a config via environment variables ************************************** For certain CI/CD systems, it's useful to pass in raw yaml config as environment variables: .. code-block:: bash $ python main.py fit --trainer "$TRAINER_CONFIG" --model "$MODEL_CONFIG" [...] ---- *************************************** Run from environment variables directly *************************************** The Lightning CLI can convert every possible CLI flag into an environment variable. To enable this, set the *env_parse* argument: .. code:: python cli = LightningCLI(DemoModel, env_parse=True) now use the ``--help`` CLI flag with any subcommand: .. code:: bash $ python main.py fit --help which will show you ALL possible environment variables that can be set: .. code:: bash usage: main.py [options] fit [-h] [-c CONFIG] ... optional arguments: ... ARG: --model.out_dim OUT_DIM ENV: PL_FIT__MODEL__OUT_DIM (type: int, default: 10) ARG: --model.learning_rate LEARNING_RATE ENV: PL_FIT__MODEL__LEARNING_RATE (type: float, default: 0.02) now you can customize the behavior via environment variables: .. code:: bash # set the options via env vars $ export PL_FIT__MODEL__LEARNING_RATE=0.01 $ export PL_FIT__MODEL__OUT_DIM=5 $ python main.py fit ---- ************************ Set default config files ************************ To set a path to a config file of defaults, use the ``default_config_files`` argument: .. testcode:: cli = LightningCLI(MyModel, MyDataModule, parser_kwargs={"default_config_files": ["my_cli_defaults.yaml"]}) or if you want defaults per subcommand: .. testcode:: cli = LightningCLI(MyModel, MyDataModule, parser_kwargs={"fit": {"default_config_files": ["my_fit_defaults.yaml"]}}) ---- ***************************** Enable variable interpolation ***************************** In certain cases where multiple settings need to share a value, consider using variable interpolation. For instance: .. code-block:: yaml model: encoder_layers: 12 decoder_layers: - ${model.encoder_layers} - 4 To enable variable interpolation, first install omegaconf: .. code:: bash pip install omegaconf Then set omegaconf when instantiating the ``LightningCLI`` class: .. code:: python cli = LightningCLI(MyModel, parser_kwargs={"parser_mode": "omegaconf"}) After this, the CLI will automatically perform interpolation in yaml files: .. code:: bash python main.py --model.encoder_layers=12 For more details about the interpolation support and its limitations, have a look at the `jsonargparse `__ and the `omegaconf `__ documentations. .. note:: There are many use cases in which variable interpolation is not the correct approach. When a parameter **must always** be derived from other settings, it shouldn't be up to the CLI user to do this in a config file. For example, if the data and model both require ``batch_size`` and must be the same value, then :ref:`cli_link_arguments` should be used instead of interpolation.