# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from contextlib import redirect_stderr from io import StringIO from re import escape import pytest from torch.utils.data import DataLoader, DistributedSampler from torch.utils.data.sampler import BatchSampler, Sampler, SequentialSampler from pytorch_lightning import Trainer from pytorch_lightning.utilities.data import _update_dataloader from pytorch_lightning.utilities.enums import _StrategyType from pytorch_lightning.utilities.exceptions import MisconfigurationException from tests.helpers import BoringModel, RandomDataset from tests.helpers.runif import RunIf @RunIf(skip_windows=True) @pytest.mark.parametrize("mode", (1, 2)) def test_replace_distributed_sampler(tmpdir, mode): class IndexedRandomDataset(RandomDataset): def __getitem__(self, index): return self.data[index] class CustomDataLoader(DataLoader): def __init__(self, num_features, dataset, *args, **kwargs): # argument `num_features` unused on purpose # it gets automatically captured by _replace_dataloader_init_method() super().__init__(dataset, *args, **kwargs) class CustomBatchSampler(BatchSampler): pass class TestModel(BoringModel): def __init__(self, numbers_test_dataloaders, mode): super().__init__() self._numbers_test_dataloaders = numbers_test_dataloaders self._mode = mode def test_step(self, batch, batch_idx, dataloader_idx=0): return super().test_step(batch, batch_idx) def on_test_start(self) -> None: dataloader = self.trainer.test_dataloaders[0] assert isinstance(dataloader, CustomDataLoader) batch_sampler = dataloader.batch_sampler if self._mode == 1: assert isinstance(batch_sampler, CustomBatchSampler) # the batch_size is set on the batch sampler assert dataloader.batch_size is None elif self._mode == 2: assert type(batch_sampler) is BatchSampler assert dataloader.batch_size == self._mode assert batch_sampler.batch_size == self._mode assert batch_sampler.drop_last # the sampler has been replaced assert isinstance(batch_sampler.sampler, DistributedSampler) def create_dataset(self): dataset = IndexedRandomDataset(32, 64) if self._mode == 1: # with a custom batch sampler batch_sampler = CustomBatchSampler(SequentialSampler(dataset), batch_size=1, drop_last=True) return CustomDataLoader(32, dataset, batch_sampler=batch_sampler) elif self._mode == 2: # with no batch sampler provided return CustomDataLoader(32, dataset, batch_size=2, drop_last=True) def test_dataloader(self): return [self.create_dataset()] * self._numbers_test_dataloaders model = TestModel(2, mode) model.test_epoch_end = None trainer = Trainer( default_root_dir=tmpdir, limit_test_batches=2, strategy="ddp_find_unused_parameters_false", num_processes=1 ) trainer.test(model) class TestSpawnBoringModel(BoringModel): def __init__(self, num_workers): super().__init__() self.num_workers = num_workers def train_dataloader(self): return DataLoader(RandomDataset(32, 64), num_workers=self.num_workers) def on_pretrain_routine_start(self): self._resout = StringIO() self.ctx = redirect_stderr(self._resout) self.ctx.__enter__() def on_train_end(self): def _get_warning_msg(): dl = self.trainer.train_dataloader.loaders if hasattr(dl, "persistent_workers"): if self.num_workers == 0: warn_str = "Consider setting num_workers>0 and persistent_workers=True" else: warn_str = "Consider setting persistent_workers=True" else: warn_str = "Consider setting strategy=ddp" return warn_str if self.trainer.is_global_zero: self.ctx.__exit__(None, None, None) msg = self._resout.getvalue() warn_str = _get_warning_msg() assert warn_str in msg @RunIf(skip_windows=True, skip_49370=True) @pytest.mark.parametrize("num_workers", [0, 1]) def test_dataloader_warnings(tmpdir, num_workers): trainer = Trainer(default_root_dir=tmpdir, strategy="ddp_spawn", num_processes=2, fast_dev_run=4) assert trainer._accelerator_connector._distrib_type == _StrategyType.DDP_SPAWN trainer.fit(TestSpawnBoringModel(num_workers)) def test_update_dataloader_raises(): with pytest.raises(ValueError, match="needs to subclass `torch.utils.data.DataLoader"): _update_dataloader(object(), object(), mode="fit") def test_dataloaders_with_missing_keyword_arguments(): ds = RandomDataset(10, 20) class TestDataLoader(DataLoader): def __init__(self, dataset): super().__init__(dataset) loader = TestDataLoader(ds) sampler = SequentialSampler(ds) match = escape("missing arguments are ['batch_sampler', 'sampler', 'shuffle']") with pytest.raises(MisconfigurationException, match=match): _update_dataloader(loader, sampler, mode="fit") match = escape("missing arguments are ['batch_sampler', 'batch_size', 'drop_last', 'sampler', 'shuffle']") with pytest.raises(MisconfigurationException, match=match): _update_dataloader(loader, sampler, mode="predict") class TestDataLoader(DataLoader): def __init__(self, dataset, *args, **kwargs): super().__init__(dataset) loader = TestDataLoader(ds) sampler = SequentialSampler(ds) _update_dataloader(loader, sampler, mode="fit") _update_dataloader(loader, sampler, mode="predict") class TestDataLoader(DataLoader): def __init__(self, *foo, **bar): super().__init__(*foo, **bar) loader = TestDataLoader(ds) sampler = SequentialSampler(ds) _update_dataloader(loader, sampler, mode="fit") _update_dataloader(loader, sampler, mode="predict") class TestDataLoader(DataLoader): def __init__(self, num_feat, dataset, *args, shuffle=False): self.num_feat = num_feat super().__init__(dataset) loader = TestDataLoader(1, ds) sampler = SequentialSampler(ds) match = escape("missing arguments are ['batch_sampler', 'sampler']") with pytest.raises(MisconfigurationException, match=match): _update_dataloader(loader, sampler, mode="fit") match = escape("missing arguments are ['batch_sampler', 'batch_size', 'drop_last', 'sampler']") with pytest.raises(MisconfigurationException, match=match): _update_dataloader(loader, sampler, mode="predict") class TestDataLoader(DataLoader): def __init__(self, num_feat, dataset, **kwargs): self.feat_num = num_feat super().__init__(dataset) loader = TestDataLoader(1, ds) sampler = SequentialSampler(ds) match = escape("missing attributes are ['num_feat']") with pytest.raises(MisconfigurationException, match=match): _update_dataloader(loader, sampler, mode="fit") match = escape("missing attributes are ['num_feat']") with pytest.raises(MisconfigurationException, match=match): _update_dataloader(loader, sampler, mode="predict") def test_update_dataloader_with_multiprocessing_context(): """This test verifies that replace_sampler conserves multiprocessing context.""" train = RandomDataset(32, 64) context = "spawn" train = DataLoader(train, batch_size=32, num_workers=2, multiprocessing_context=context, shuffle=True) new_data_loader = _update_dataloader(train, SequentialSampler(train.dataset)) assert new_data_loader.multiprocessing_context == train.multiprocessing_context def test_dataloader_reinit_for_subclass(): class CustomDataLoader(DataLoader): def __init__( self, dataset, batch_size=1, shuffle=False, sampler=None, batch_sampler=None, num_workers=0, collate_fn=None, pin_memory=False, drop_last=False, timeout=0, worker_init_fn=None, dummy_kwarg=None, ): super().__init__( dataset, batch_size, shuffle, sampler, batch_sampler, num_workers, collate_fn, pin_memory, drop_last, timeout, worker_init_fn, ) self.dummy_kwarg = dummy_kwarg self.something_unrelated = 1 trainer = Trainer(num_processes=2, strategy="ddp_spawn") class CustomDummyObj: sampler = None result = trainer.prepare_dataloader(CustomDummyObj(), shuffle=True) assert isinstance(result, CustomDummyObj), "Wrongly reinstantiated data loader" dataset = list(range(10)) result = trainer.prepare_dataloader(CustomDataLoader(dataset), shuffle=True) assert isinstance(result, DataLoader) assert isinstance(result, CustomDataLoader) assert result.dummy_kwarg is None # Shuffled DataLoader should also work result = trainer.prepare_dataloader(CustomDataLoader(dataset, shuffle=True), shuffle=True) assert isinstance(result, DataLoader) assert isinstance(result, CustomDataLoader) assert result.dummy_kwarg is None class CustomSampler(Sampler): pass # Should raise an error if existing sampler is being replaced dataloader = CustomDataLoader(dataset, sampler=CustomSampler(dataset)) with pytest.raises(MisconfigurationException, match="will be replaced by `DistributedSampler`"): trainer.prepare_dataloader(dataloader, shuffle=True) class LoaderTestModel(BoringModel): def training_step(self, batch, batch_idx): assert len(self.trainer.train_dataloader.loaders) == 10 return super().training_step(batch, batch_idx) def validation_step(self, batch, batch_idx): assert len(self.trainer.val_dataloaders[0]) == 10 return super().validation_step(batch, batch_idx) def test_step(self, batch, batch_idx): assert len(self.trainer.test_dataloaders[0]) == 10 return super().test_step(batch, batch_idx) def predict_step(self, batch, batch_idx, dataloader_idx=0): assert len(self.trainer.predict_dataloaders[0]) == 10 return super().predict_step(batch, batch_idx, dataloader_idx=dataloader_idx) def test_loader_detaching(): """Checks that the loader has been resetted after the entrypoint.""" loader = DataLoader(RandomDataset(32, 10), batch_size=1) model = LoaderTestModel() assert len(model.train_dataloader()) == 64 assert len(model.val_dataloader()) == 64 assert len(model.predict_dataloader()) == 64 assert len(model.test_dataloader()) == 64 trainer = Trainer(fast_dev_run=1) trainer.fit(model, loader, loader) assert len(model.train_dataloader()) == 64 assert len(model.val_dataloader()) == 64 assert len(model.predict_dataloader()) == 64 assert len(model.test_dataloader()) == 64 trainer.validate(model, loader) assert len(model.train_dataloader()) == 64 assert len(model.val_dataloader()) == 64 assert len(model.predict_dataloader()) == 64 assert len(model.test_dataloader()) == 64 trainer.predict(model, loader) assert len(model.train_dataloader()) == 64 assert len(model.val_dataloader()) == 64 assert len(model.predict_dataloader()) == 64 assert len(model.test_dataloader()) == 64 trainer.test(model, loader) assert len(model.train_dataloader()) == 64 assert len(model.val_dataloader()) == 64 assert len(model.predict_dataloader()) == 64 assert len(model.test_dataloader()) == 64 def test_pre_made_batches(): """Check that loader works with pre-made batches.""" loader = DataLoader(RandomDataset(32, 10), batch_size=None) trainer = Trainer(fast_dev_run=1) trainer.predict(LoaderTestModel(), loader)