# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from unittest import mock from unittest.mock import MagicMock import pytest import torch from torch.utils.data import DataLoader from pytorch_lightning import Trainer from pytorch_lightning.plugins.training_type import TPUSpawnPlugin from pytorch_lightning.utilities.exceptions import MisconfigurationException from tests.helpers.boring_model import BoringModel, RandomDataset from tests.helpers.dataloaders import CustomNotImplementedErrorDataloader from tests.helpers.runif import RunIf from tests.helpers.utils import pl_multi_process_test class BoringModelNoDataloaders(BoringModel): def train_dataloader(self): raise NotImplementedError def val_dataloader(self): raise NotImplementedError def test_dataloader(self): raise NotImplementedError def predict_dataloader(self): raise NotImplementedError _loader = DataLoader(RandomDataset(32, 64)) _loader_no_len = CustomNotImplementedErrorDataloader(_loader) @pytest.mark.parametrize( "train_dataloaders, val_dataloaders, test_dataloaders, predict_dataloaders", [ (_loader_no_len, None, None, None), (None, _loader_no_len, None, None), (None, None, _loader_no_len, None), (None, None, None, _loader_no_len), (None, [_loader, _loader_no_len], None, None), ], ) @mock.patch("pytorch_lightning.plugins.training_type.tpu_spawn.xm") def test_error_iterable_dataloaders_passed_to_fit( _, tmpdir, train_dataloaders, val_dataloaders, test_dataloaders, predict_dataloaders ): """Test that the TPUSpawnPlugin identifies dataloaders with iterable datasets and fails early.""" trainer = Trainer() model = BoringModelNoDataloaders() model.trainer = trainer trainer._data_connector.attach_dataloaders( model, train_dataloaders=train_dataloaders, val_dataloaders=val_dataloaders, test_dataloaders=test_dataloaders, predict_dataloaders=predict_dataloaders, ) with pytest.raises(MisconfigurationException, match="TPUs do not currently support"): TPUSpawnPlugin(MagicMock()).connect(model) @mock.patch("pytorch_lightning.plugins.training_type.tpu_spawn.xm") def test_error_process_iterable_dataloader(_): with pytest.raises(MisconfigurationException, match="TPUs do not currently support"): TPUSpawnPlugin(MagicMock()).process_dataloader(_loader_no_len) class BoringModelTPU(BoringModel): def on_train_start(self) -> None: assert self.device == torch.device("xla") assert os.environ.get("PT_XLA_DEBUG") == "1" @RunIf(tpu=True) @pl_multi_process_test def test_model_tpu_one_core(): """Tests if device/debug flag is set correctely when training and after teardown for TPUSpawnPlugin.""" trainer = Trainer(tpu_cores=1, fast_dev_run=True, plugin=TPUSpawnPlugin(debug=True)) # assert training type plugin attributes for device setting assert isinstance(trainer.training_type_plugin, TPUSpawnPlugin) assert not trainer.training_type_plugin.on_gpu assert trainer.training_type_plugin.on_tpu assert trainer.training_type_plugin.root_device == torch.device("xla") model = BoringModelTPU() trainer.fit(model) assert "PT_XLA_DEBUG" not in os.environ