# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # -------------------------------------------- # -------------------------------------------- # -------------------------------------------- # USE THIS MODEL TO REPRODUCE A BUG YOU REPORT # -------------------------------------------- # -------------------------------------------- # -------------------------------------------- import os import torch from torch.utils.data import Dataset from pytorch_lightning import Trainer, LightningModule class RandomDataset(Dataset): def __init__(self, size, length): self.len = length self.data = torch.randn(length, size) def __getitem__(self, index): return self.data[index] def __len__(self): return self.len class BoringModel(LightningModule): def __init__(self): """ Testing PL Module Use as follows: - subclass - modify the behavior for what you want class TestModel(BaseTestModel): def training_step(...): # do your own thing or: model = BaseTestModel() model.training_epoch_end = None """ super().__init__() self.layer = torch.nn.Linear(32, 2) def forward(self, x): return self.layer(x) def loss(self, batch, prediction): # An arbitrary loss to have a loss that updates the model weights during `Trainer.fit` calls return torch.nn.functional.mse_loss(prediction, torch.ones_like(prediction)) def step(self, x): x = self.layer(x) out = torch.nn.functional.mse_loss(x, torch.ones_like(x)) return out def training_step(self, batch, batch_idx): output = self.layer(batch) loss = self.loss(batch, output) return {"loss": loss} def training_step_end(self, training_step_outputs): return training_step_outputs def training_epoch_end(self, outputs) -> None: torch.stack([x["loss"] for x in outputs]).mean() def validation_step(self, batch, batch_idx): output = self.layer(batch) loss = self.loss(batch, output) return {"x": loss} def validation_epoch_end(self, outputs) -> None: torch.stack([x['x'] for x in outputs]).mean() def test_step(self, batch, batch_idx): output = self.layer(batch) loss = self.loss(batch, output) return {"y": loss} def test_epoch_end(self, outputs) -> None: torch.stack([x["y"] for x in outputs]).mean() def configure_optimizers(self): optimizer = torch.optim.SGD(self.layer.parameters(), lr=0.1) lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1) return [optimizer], [lr_scheduler] def run_test(): class TestModel(BoringModel): def on_train_epoch_start(self) -> None: print('override any method to prove your bug') # fake data train_data = torch.utils.data.DataLoader(RandomDataset(32, 64)) val_data = torch.utils.data.DataLoader(RandomDataset(32, 64)) test_data = torch.utils.data.DataLoader(RandomDataset(32, 64)) # model model = TestModel() trainer = Trainer( default_root_dir=os.getcwd(), limit_train_batches=1, limit_val_batches=1, max_epochs=1, weights_summary=None, ) trainer.fit(model, train_data, val_data) trainer.test(test_dataloaders=test_data) if __name__ == '__main__': run_test()