import os import pytest from lightning.pytorch import Trainer from lightning.pytorch.demos.boring_classes import BoringModel from lightning.store import download_model, load_model, upload_model from lightning.store.save import __STORAGE_DIR_NAME from tests_cloud import _API_KEY, _PROJECT_ID, _USERNAME @pytest.mark.parametrize("pbar", [True, False]) def test_model(lit_home, pbar, model_name: str = "boring_model", version: str = "latest"): upload_model(model_name, model=BoringModel(), api_key=_API_KEY, project_id=_PROJECT_ID) download_model(f"{_USERNAME}/{model_name}", progress_bar=pbar) assert os.path.isdir(os.path.join(lit_home, __STORAGE_DIR_NAME, _USERNAME, model_name, version)) model = load_model(f"{_USERNAME}/{model_name}") assert model is not None def test_only_weights(lit_home, model_name: str = "boring_model_only_weights", version: str = "latest"): model = BoringModel() trainer = Trainer(fast_dev_run=True) trainer.fit(model) upload_model(model_name, model=model, weights_only=True, api_key=_API_KEY, project_id=_PROJECT_ID) download_model(f"{_USERNAME}/{model_name}") assert os.path.isdir(os.path.join(lit_home, __STORAGE_DIR_NAME, _USERNAME, model_name, version)) model_with_weights = load_model(f"{_USERNAME}/{model_name}", load_weights=True, model=model) assert model_with_weights is not None assert model_with_weights.state_dict() is not None def test_checkpoint_path(lit_home, model_name: str = "boring_model_only_checkpoint_path", version: str = "latest"): model = BoringModel() trainer = Trainer(fast_dev_run=True) trainer.fit(model) trainer.save_checkpoint("tmp.ckpt") upload_model(model_name, checkpoint_path="tmp.ckpt", api_key=_API_KEY, project_id=_PROJECT_ID) download_model(f"{_USERNAME}/{model_name}") assert os.path.isdir(os.path.join(lit_home, __STORAGE_DIR_NAME, _USERNAME, model_name, version)) ckpt = load_model(f"{_USERNAME}/{model_name}", load_checkpoint=True, model=model) assert ckpt is not None