###### New project Quick Start To start a new project define these two files. 1. [Define a LightningModule](/pytorch-lightning/LightningModule/RequiredTrainerInterface/) 2. [Define a trainer](https://williamfalcon.github.io/pytorch-lightning/Trainer/) - [Basic CPU Trainer Template](https://github.com/williamFalcon/pytorch-lightning/blob/master/pytorch_lightning/examples/new_project_templates/single_cpu_template.py) - [Multi-GPU Trainer Template](https://github.com/williamFalcon/pytorch-lightning/blob/master/pytorch_lightning/examples/new_project_templates/single_gpu_node_template.py) - [GPU cluster Trainer Template](https://github.com/williamFalcon/pytorch-lightning/blob/master/pytorch_lightning/examples/new_project_templates/multi_node_cluster_template.py) ###### Docs shortcuts - [LightningModule](LightningModule/RequiredTrainerInterface/) - [Trainer](Trainer/) ###### Quick start examples - [CPU example](examples/Examples/#cpu-hyperparameter-search) - [Hyperparameter search on single GPU](examples/Examples/#hyperparameter-search-on-a-single-or-multiple-gpus) - [Hyperparameter search on multiple GPUs on same node](examples/Examples/#hyperparameter-search-on-a-single-or-multiple-gpus) - [Hyperparameter search on a SLURM HPC cluster](examples/Examples/#Hyperparameter search on a SLURM HPC cluster) ###### Checkpointing - [Model saving](https://williamfalcon.github.io/pytorch-lightning/Trainer/Checkpointing/#model-saving) - [Model loading](https://williamfalcon.github.io/pytorch-lightning/LightningModule/methods/#load-from-metrics) ###### Computing cluster (SLURM) - [Running grid search on a cluster](https://williamfalcon.github.io/pytorch-lightning/Trainer/SLURM%20Managed%20Cluster#running-grid-search-on-a-cluster) - [Walltime auto-resubmit](https://williamfalcon.github.io/pytorch-lightning/Trainer/SLURM%20Managed%20Cluster#walltime-auto-resubmit) ###### Debugging - [Fast dev run](https://williamfalcon.github.io/pytorch-lightning/Trainer/debugging/#fast-dev-run) - [Inspect gradient norms](https://williamfalcon.github.io/pytorch-lightning/Trainer/debugging/#inspect-gradient-norms) - [Log GPU usage](https://williamfalcon.github.io/pytorch-lightning/Trainer/debugging/#Log-gpu-usage) - [Make model overfit on subset of data](https://williamfalcon.github.io/pytorch-lightning/Trainer/debugging/#make-model-overfit-on-subset-of-data) - [Print the parameter count by layer](https://williamfalcon.github.io/pytorch-lightning/Trainer/debugging/#print-the-parameter-count-by-layer) - [Pring which gradients are nan](https://williamfalcon.github.io/pytorch-lightning/Trainer/debugging/#print-which-gradients-are-nan) ###### Distributed training - [16-bit mixed precision](https://williamfalcon.github.io/pytorch-lightning/Trainer/Distributed%20training/#16-bit-mixed-precision) - [Multi-GPU](https://williamfalcon.github.io/pytorch-lightning/Trainer/Distributed%20training/#Multi-GPU) - [Multi-node](https://williamfalcon.github.io/pytorch-lightning/Trainer/Distributed%20training/#Multi-node) - [Single GPU](https://williamfalcon.github.io/pytorch-lightning/Trainer/Distributed%20training/#single-gpu) - [Self-balancing architecture](https://williamfalcon.github.io/pytorch-lightning/Trainer/Distributed%20training/#self-balancing-architecture) ###### Experiment Logging - [Display metrics in progress bar](https://williamfalcon.github.io/pytorch-lightning/Trainer/Logging/#display-metrics-in-progress-bar) - Log arbitrary metrics - [Log metric row every k batches](https://williamfalcon.github.io/pytorch-lightning/Trainer/Logging/#log-metric-row-every-k-batches) - [Process position](https://williamfalcon.github.io/pytorch-lightning/Trainer/Logging/#process-position) - [Save a snapshot of all hyperparameters](https://williamfalcon.github.io/pytorch-lightning/Trainer/Logging/#save-a-snapshot-of-all-hyperparameters) - [Snapshot code for a training run](https://williamfalcon.github.io/pytorch-lightning/Trainer/Logging/#snapshot-code-for-a-training-run) - [Write logs file to csv every k batches](https://williamfalcon.github.io/pytorch-lightning/Trainer/Logging/#write-logs-file-to-csv-every-k-batches) ###### Training loop - [Accumulate gradients](https://williamfalcon.github.io/pytorch-lightning/Trainer/Training%20Loop/#accumulated-gradients) - [Force training for min or max epochs](https://williamfalcon.github.io/pytorch-lightning/Trainer/Training%20Loop/#force-training-for-min-or-max-epochs) - [Force disable early stop](https://williamfalcon.github.io/pytorch-lightning/Trainer/Training%20Loop/#force-disable-early-stop) - [Gradient Clipping](https://williamfalcon.github.io/pytorch-lightning/Trainer/Training%20Loop/#gradient-clipping) - [Use multiple optimizers (like GANs)](https://williamfalcon.github.io/pytorch-lightning/Pytorch-Lightning/LightningModule/#configure_optimizers) - [Set how much of the training set to check (1-100%)](https://williamfalcon.github.io/pytorch-lightning/Trainer/Training%20Loop/#set-how-much-of-the-training-set-to-check) ######Validation loop - [Check validation every n epochs](https://williamfalcon.github.io/pytorch-lightning/Trainer/Validation%20loop/#check-validation-every-n-epochs) - [Set how much of the validation set to check](https://williamfalcon.github.io/pytorch-lightning/Trainer/Validation%20loop/#set-how-much-of-the-validation-set-to-check) - [Set how much of the test set to check](https://williamfalcon.github.io/pytorch-lightning/Trainer/Validation%20loop/#set-how-much-of-the-test-set-to-check) - [Set validation check frequency within 1 training epoch](https://williamfalcon.github.io/pytorch-lightning/Trainer/Validation%20loop/#set-validation-check-frequency-within-1-training-epoch) - [Set the number of validation sanity steps](https://williamfalcon.github.io/pytorch-lightning/Trainer/Validation%20loop/#set-the-number-of-validation-sanity-steps)