# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from pytorch_lightning.trainer.supporters import PredictionCollection from pytorch_lightning.core.step_result import Result, EvalResult from pytorch_lightning.utilities.exceptions import MisconfigurationException from pytorch_lightning.utilities.model_utils import is_overridden from pytorch_lightning.utilities.distributed import rank_zero_warn from pytorch_lightning.utilities.warning_utils import WarningCache class EvaluationLoop(object): def __init__(self, trainer): self.trainer = trainer self.testing = False self.outputs = [] self.step_metrics = [] self.predictions = None self.max_batches = None self.warning_cache = WarningCache() def on_trainer_init(self): self.trainer.num_val_batches = [] self.trainer.num_sanity_val_batches = [] self.trainer.num_test_batches = [] self.trainer.test_dataloaders = None self.trainer.val_dataloaders = None self.trainer.running_sanity_check = False self.trainer.testing = False # when .test() is called, it sets this self.trainer.tested_ckpt_path = None # when true, prints test results self.trainer.verbose_test = True def get_evaluation_dataloaders(self, max_batches): # select dataloaders model = self.trainer.get_model() # select dataloaders if self.testing: self.trainer.reset_test_dataloader(model) dataloaders = self.trainer.test_dataloaders new_max_batches = self.trainer.num_test_batches else: # val in_sanity_check = self.trainer.running_sanity_check should_reload_every_epoch = self.trainer.reload_dataloaders_every_epoch if (self.trainer.val_dataloaders is None or should_reload_every_epoch) and not in_sanity_check: self.trainer.reset_val_dataloader(model) dataloaders = self.trainer.val_dataloaders new_max_batches = self.trainer.num_val_batches if max_batches is None: max_batches = new_max_batches return dataloaders, max_batches def should_skip_evaluation(self, dataloaders, max_batches): # skip when dataloaders aren't defined if dataloaders is None: return True # enable disabling validation step with limit_val_batches = 0 should_skip = sum(max_batches) == 0 if should_skip: return True return False def on_evaluation_start(self, *args, **kwargs): if self.testing: self.trainer.call_hook('on_test_start', *args, **kwargs) else: self.trainer.call_hook('on_validation_start', *args, **kwargs) def on_evaluation_end(self, *args, **kwargs): if self.testing: self.trainer.call_hook('on_test_end', *args, **kwargs) else: self.trainer.call_hook('on_validation_end', *args, **kwargs) def reload_evaluation_dataloaders(self): model = self.trainer.get_model() if self.testing: self.trainer.reset_test_dataloader(model) else: self.trainer.reset_val_dataloader(model) def is_using_eval_results(self): outputs = self.outputs using_eval_result = len(outputs) > 0 and len(outputs[0]) > 0 and isinstance(outputs[0][0], EvalResult) return using_eval_result def setup(self, model, max_batches, dataloaders): # copy properties for forward overrides self.trainer.model_connector.copy_trainer_model_properties(model) # bookkeeping self.outputs = [] self.predictions = PredictionCollection(self.trainer.global_rank, self.trainer.world_size) # convert max_batches to list if isinstance(max_batches, int): max_batches = [max_batches] * len(dataloaders) self.max_batches = max_batches def on_evaluation_epoch_start(self, *args, **kwargs): if self.testing: self.trainer.call_hook('on_test_epoch_start', *args, **kwargs) else: self.trainer.call_hook('on_validation_epoch_start', *args, **kwargs) def build_args(self, test_mode, batch, batch_idx, dataloader_idx): # make dataloader_idx arg in validation_step optional args = [batch, batch_idx] multiple_val_loaders = (not test_mode and len(self.trainer.val_dataloaders) > 1) multiple_test_loaders = (test_mode and len(self.trainer.test_dataloaders) > 1) if multiple_test_loaders or multiple_val_loaders: args.append(dataloader_idx) return args def evaluation_step(self, test_mode, batch, batch_idx, dataloader_idx): # configure args args = self.build_args(test_mode, batch, batch_idx, dataloader_idx) # run actual test step if self.testing: output = self.trainer.accelerator_backend.test_step(args) else: output = self.trainer.accelerator_backend.validation_step(args) # track batch size for weighted average is_result_obj = isinstance(output, Result) if is_result_obj: output.track_batch_size(len(batch)) # allow only EvalResult when using structured results (from val_step) if is_result_obj and not isinstance(output, EvalResult): m = 'only EvalResults or dicts are allowed from validation_step' raise MisconfigurationException(m) return output def evaluation_step_end(self, *args, **kwargs): if self.testing: output = self.trainer.call_hook('test_step_end', *args, **kwargs) else: output = self.trainer.call_hook('validation_step_end', *args, **kwargs) return output def evaluation_epoch_end(self, num_dataloaders): using_eval_result = self.is_using_eval_results() # call the model epoch end eval_results = self.__run_eval_epoch_end(num_dataloaders, using_eval_result) # enable returning anything for r in eval_results: if not isinstance(r, (dict, Result, torch.Tensor)): return [] return eval_results def log_epoch_metrics(self, eval_results, test_mode): using_eval_result = self.is_using_eval_results() eval_loop_results = self.trainer.logger_connector.on_evaluation_epoch_end( eval_results, using_eval_result, test_mode ) return eval_loop_results def __run_eval_epoch_end(self, num_dataloaders, using_eval_result): model = self.trainer.get_model() # with a single dataloader don't pass an array outputs = self.outputs eval_results = outputs if num_dataloaders == 1: eval_results = outputs[0] user_reduced = False if self.testing: if is_overridden('test_epoch_end', model=model): model._current_fx_name = 'test_epoch_end' if using_eval_result: eval_results = self.__gather_epoch_end_eval_results(outputs) eval_results = model.test_epoch_end(eval_results) user_reduced = True else: if is_overridden('validation_epoch_end', model=model): model._current_fx_name = 'validation_epoch_end' if using_eval_result: eval_results = self.__gather_epoch_end_eval_results(outputs) eval_results = model.validation_epoch_end(eval_results) user_reduced = True # depre warning if eval_results is not None: step = 'testing_epoch_end' if self.testing else 'validation_epoch_end' m = f'The {step} should not return anything as of 9.1.' \ f'to log, use self.log(...) or self.write(...) directly in the LightningModule' self.warning_cache.warn(m) if using_eval_result and not user_reduced: eval_results = self.__auto_reduce_result_objs(outputs) result = model._results if len(result) > 0 and eval_results is None: eval_results = result.get_epoch_log_metrics() if not isinstance(eval_results, list): eval_results = [eval_results] return eval_results def __gather_epoch_end_eval_results(self, outputs): eval_results = [] for epoch_output in outputs: result = epoch_output[0].__class__.gather(epoch_output) if 'checkpoint_on' in result: result.checkpoint_on = result.checkpoint_on.mean() if 'early_stop_on' in result: result.early_stop_on = result.early_stop_on.mean() eval_results.append(result) # with 1 dataloader don't pass in a list if len(eval_results) == 1: eval_results = eval_results[0] return eval_results def __auto_reduce_result_objs(self, outputs): # outputs has a list of results per dataloader eval_results = [] for dl_output in outputs: result = dl_output[0] result = result.__class__.reduce_on_epoch_end(dl_output) if 'checkpoint_on' in result: result.checkpoint_on = result.checkpoint_on.mean() if 'early_stop_on' in result: result.early_stop_on = result.early_stop_on.mean() eval_results.append(result) return eval_results def on_evaluation_batch_start(self, *args, **kwargs): # reset the result of the PL module model = self.trainer.get_model() model._results = Result() model._current_fx_name = 'evaluation_step' if self.testing: self.trainer.call_hook('on_test_batch_start', *args, **kwargs) else: self.trainer.call_hook('on_validation_batch_start', *args, **kwargs) def on_evaluation_batch_end(self, *args, **kwargs): if self.testing: self.trainer.call_hook('on_test_batch_end', *args, **kwargs) else: self.trainer.call_hook('on_validation_batch_end', *args, **kwargs) def evaluation_batch_end_cleanup(self, output, batch_idx, dataloader_idx): # Add step predictions to prediction collection to write later if output is not None: do_write_predictions = isinstance(output, Result) and self.testing if do_write_predictions: self.predictions.add(output.pop('predictions', None)) # track debug metrics self.trainer.dev_debugger.track_eval_loss_history(self.testing, batch_idx, dataloader_idx, output) def on_evaluation_epoch_end(self, *args, **kwargs): # call the callback hook if self.testing: self.trainer.call_hook('on_test_epoch_end', *args, **kwargs) else: self.trainer.call_hook('on_validation_epoch_end', *args, **kwargs) def log_evaluation_step_metrics(self, batch, batch_idx): results = self.trainer.get_model()._results if len(results) == 1: return None results.track_batch_size(len(batch)) self.__log_result_step_metrics(results, batch_idx) return results # TODO: deprecate at 1.0 def log_evaluation_step_metrics_legacy(self, output, batch_idx): if self.trainer.running_sanity_check: return if isinstance(output, EvalResult): self.__log_result_step_metrics(output, batch_idx) def __log_result_step_metrics(self, output, batch_idx): step_log_metrics = output.get_batch_log_metrics(include_forked_originals=False) step_pbar_metrics = output.get_batch_pbar_metrics(include_forked_originals=False) if len(step_log_metrics) > 0: # make the metrics appear as a different line in the same graph metrics_by_epoch = {} for k, v in step_log_metrics.items(): metrics_by_epoch[f'{k}/epoch_{self.trainer.current_epoch}'] = v self.trainer.logger_connector.log_metrics(metrics_by_epoch, {}, step=batch_idx) if len(step_pbar_metrics) > 0: self.trainer.logger_connector.add_progress_bar_metrics(step_pbar_metrics)