# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from functools import wraps from typing import Any, List, Sequence, Tuple, TYPE_CHECKING import torch from pytorch_lightning.core.lightning import LightningModule from pytorch_lightning.plugins.precision.precision_plugin import PrecisionPlugin from pytorch_lightning.utilities.apply_func import apply_to_collection if TYPE_CHECKING: from torch.nn import Module from torch.optim import Optimizer class _DoublePrecisionPatch: """Class to handle patching of methods in the ``LightningModule`` and subsequent teardown.""" def __init__(self, model: 'Module', method_name: str, old_method: Any) -> None: self.model = model self.method_name = method_name self.old_method = old_method def teardown(self) -> None: setattr(self.model, self.method_name, self.old_method) @staticmethod def _to_double_precision(data: torch.Tensor) -> torch.Tensor: if data.is_floating_point(): return data.double() return data @staticmethod def _move_float_tensors_to_double(collection: Any) -> Any: return apply_to_collection(collection, torch.Tensor, function=_DoublePrecisionPatch._to_double_precision) @classmethod def patch(cls, model: 'Module', method_name: str) -> '_DoublePrecisionPatch': old_method = getattr(model, method_name) @wraps(old_method) def new_method(*args: Any, **kwargs: Any) -> Any: return old_method( *_DoublePrecisionPatch._move_float_tensors_to_double(args), **_DoublePrecisionPatch._move_float_tensors_to_double(kwargs) ) setattr(model, method_name, new_method if callable(old_method) else old_method) return cls(model, method_name, old_method) class DoublePrecisionPlugin(PrecisionPlugin): """Plugin for training with double (``torch.float64``) precision.""" precision: int = 64 def __init__(self) -> None: self.patches: List[_DoublePrecisionPatch] = [] def connect( self, model: 'Module', optimizers: Sequence['Optimizer'], lr_schedulers: Sequence[Any], ) -> Tuple['Module', Sequence['Optimizer'], Sequence[Any]]: """Converts the model to double precision and wraps the `training_step`, `validation_step`, `test_step`, `predict_step`, and `forward` methods to convert incoming floating point data to double. Does not alter `optimizers` or `lr_schedulers`.""" model = model.to(dtype=torch.float64) if isinstance(model, LightningModule): self.patches.append(_DoublePrecisionPatch.patch(model, 'training_step')) self.patches.append(_DoublePrecisionPatch.patch(model, 'validation_step')) self.patches.append(_DoublePrecisionPatch.patch(model, 'test_step')) self.patches.append(_DoublePrecisionPatch.patch(model, 'predict_step')) self.patches.append(_DoublePrecisionPatch.patch(model, 'forward')) return super().connect(model, optimizers, lr_schedulers) def post_dispatch(self) -> None: while len(self.patches) > 0: self.patches.pop().teardown()