# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging from abc import ABC import torch from torch import Tensor from pytorch_lightning.core.lightning import LightningModule from pytorch_lightning.utilities import rank_zero_deprecation from pytorch_lightning.utilities.finite_checks import detect_nan_parameters, print_nan_gradients EPSILON = 1e-6 EPSILON_FP16 = 1e-5 log = logging.getLogger(__name__) class TrainerTrainingTricksMixin(ABC): """ TODO: Remove this class in v1.5. Use the NaN utilities from ``pytorch_lightning.utilities.finite_checks`` instead. """ # this is just a summary on variables used in this abstract class, # the proper values/initialisation should be done in child class lightning_module: LightningModule def print_nan_gradients(self) -> None: rank_zero_deprecation( "Internal: TrainerTrainingTricksMixin.print_nan_gradients is deprecated in v1.3" " and will be removed in v1.5." " Use `pytorch_lightning.utilities.finite_checks.print_nan_gradients` instead." ) model = self.lightning_module print_nan_gradients(model) def detect_nan_tensors(self, loss: Tensor) -> None: rank_zero_deprecation( "Internal: TrainerTrainingTricksMixin.detect_nan_tensors is deprecated in v1.3" " and will be removed in v1.5." " Use `pytorch_lightning.utilities.finite_checks.detect_nan_parameters` instead." ) # check if loss is nan if not torch.isfinite(loss).all(): raise ValueError('The loss returned in `training_step` is nan or inf.') model = self.lightning_module detect_nan_parameters(model)