""" Lightning supports model training on a cluster managed by SLURM in the following cases: 1. Training on a single cpu or single GPU. 2. Train on multiple GPUs on the same node using DataParallel or DistributedDataParallel 3. Training across multiple GPUs on multiple different nodes via DistributedDataParallel. .. note:: A node means a machine with multiple GPUs Running grid search on a cluster -------------------------------- To use lightning to run a hyperparameter search (grid-search or random-search) on a cluster do 4 things: (1). Define the parameters for the grid search .. code-block:: python from test_tube import HyperOptArgumentParser # subclass of argparse parser = HyperOptArgumentParser(strategy='random_search') parser.add_argument('--learning_rate', default=0.002, type=float, help='the learning rate') # let's enable optimizing over the number of layers in the network parser.opt_list('--nb_layers', default=2, type=int, tunable=True, options=[2, 4, 8]) hparams = parser.parse_args() .. note:: You must set `Tunable=True` for that argument to be considered in the permutation set. Otherwise test-tube will use the default value. This flag is useful when you don't want to search over an argument and want to use the default instead. (2). Define the cluster options in the `SlurmCluster object `_ (over 5 nodes and 8 gpus) .. code-block:: python from test_tube.hpc import SlurmCluster # hyperparameters is a test-tube hyper params object # see https://williamfalcon.github.io/test-tube/hyperparameter_optimization/HyperOptArgumentParser/ hyperparams = args.parse() # init cluster cluster = SlurmCluster( hyperparam_optimizer=hyperparams, log_path='/path/to/log/results/to', python_cmd='python3' ) # let the cluster know where to email for a change in job status (ie: complete, fail, etc...) cluster.notify_job_status(email='some@email.com', on_done=True, on_fail=True) # set the job options. In this instance, we'll run 20 different models # each with its own set of hyperparameters giving each one 1 GPU (ie: taking up 20 GPUs) cluster.per_experiment_nb_gpus = 8 cluster.per_experiment_nb_nodes = 5 # we'll request 10GB of memory per node cluster.memory_mb_per_node = 10000 # set a walltime of 10 minues cluster.job_time = '10:00' (3). Make a main function with your model and trainer. Each job will call this function with a particular hparams configuration.:: from pytorch_lightning import Trainer def train_fx(trial_hparams, cluster_manager, _): # hparams has a specific set of hyperparams my_model = MyLightningModel() # give the trainer the cluster object trainer = Trainer() trainer.fit(my_model) ` (4). Start the grid/random search:: # run the models on the cluster cluster.optimize_parallel_cluster_gpu( train_fx, nb_trials=20, job_name='my_grid_search_exp_name', job_display_name='my_exp') .. note:: `nb_trials` specifies how many of the possible permutations to use. If using `grid_search` it will use the depth first ordering. If using `random_search` it will use the first k shuffled options. FYI, random search has been shown to be just as good as any Bayesian optimization method when using a reasonable number of samples (60), see this `paper `_ for more information. Walltime auto-resubmit ---------------------- Lightning automatically resubmits jobs when they reach the walltime. Make sure to set the SIGUSR1 signal in your SLURM script.:: # 90 seconds before training ends #SBATCH --signal=SIGUSR1@90 When lightning receives the SIGUSR1 signal it will: 1. save a checkpoint with 'hpc_ckpt' in the name. 2. resubmit the job using the SLURM_JOB_ID When the script starts again, Lightning will: 1. search for a 'hpc_ckpt' checkpoint. 2. restore the model, optimizers, schedulers, epoch, etc... """ import os import re import warnings from abc import ABC, abstractmethod from typing import Union import torch from pytorch_lightning import _logger as log from pytorch_lightning.loggers import LightningLoggerBase from pytorch_lightning.utilities.debugging import MisconfigurationException try: from apex import amp except ImportError: APEX_AVAILABLE = False else: APEX_AVAILABLE = True class TrainerDDPMixin(ABC): # this is just a summary on variables used in this abstract class, # the proper values/initialisation should be done in child class on_gpu: bool num_gpu_nodes: int logger: Union[LightningLoggerBase, bool] data_parallel_device_ids: ... distributed_backend: str use_amp: bool amp_level: str use_tpu: bool default_save_path: str @property @abstractmethod def num_gpus(self) -> int: """Warning: this is just empty shell for code implemented in other class.""" @abstractmethod def copy_trainer_model_properties(self, *args): """Warning: this is just empty shell for code implemented in other class.""" @abstractmethod def run_pretrain_routine(self, *args): """Warning: this is just empty shell for code implemented in other class.""" @abstractmethod def init_optimizers(self, *args): """Warning: this is just empty shell for code implemented in other class.""" def init_tpu(self): # turn off all the GPU stuff self.distributed_backend = None # enable tpu self.use_tpu = True def set_distributed_mode(self, distributed_backend, num_gpu_nodes): # skip for CPU if self.num_gpus == 0: return # single GPU case # in single gpu case we allow ddp so we can train on multiple # nodes, 1 gpu per node if self.num_gpus == 1: self.single_gpu = True if distributed_backend is not None: self.use_dp = distributed_backend == 'dp' self.use_ddp = distributed_backend == 'ddp' self.use_ddp2 = distributed_backend == 'ddp2' # disable single gpu when using ddp2 if self.use_ddp2: self.single_gpu = False # multiple GPU case elif self.num_gpus > 1: if distributed_backend is not None: # DP, DDP case self.use_dp = distributed_backend == 'dp' self.use_ddp = distributed_backend == 'ddp' self.use_ddp2 = distributed_backend == 'ddp2' elif distributed_backend is None: m = 'You requested multiple GPUs but did not specify a backend' \ 'Trainer(distributed_backend=dp) (or ddp, ddp2)' \ 'Setting distributed_backend=dp for you' warnings.warn(m) self.use_dp = True self.use_ddp = False self.use_ddp2 = False # throw error to force user ddp or ddp2 choice if num_gpu_nodes > 1 and not (self.use_ddp2 or self.use_ddp): w = 'DataParallel does not support num_nodes > 1. ' \ 'Switching to DistributedDataParallel for you. ' \ 'To silence this warning set distributed_backend=ddp' \ 'or distributed_backend=ddp2' raise MisconfigurationException(w) log.info(f'GPU available: {torch.cuda.is_available()}, used: {self.on_gpu}') def configure_slurm_ddp(self, num_gpu_nodes): self.is_slurm_managing_tasks = False # extract SLURM flag vars # whenever we have the correct number of tasks, we let slurm manage processes # otherwise we launch the required number of processes if self.use_ddp: self.num_requested_gpus = self.num_gpus * num_gpu_nodes self.num_slurm_tasks = 0 try: self.num_slurm_tasks = int(os.environ['SLURM_NTASKS']) self.is_slurm_managing_tasks = self.num_slurm_tasks == self.num_requested_gpus # in interactive mode we don't manage tasks job_name = os.environ['SLURM_JOB_NAME'] if job_name == 'bash': self.is_slurm_managing_tasks = False except Exception: # likely not on slurm, so set the slurm managed flag to false self.is_slurm_managing_tasks = False # used for tests only, set this flag to simulate slurm managing a task try: should_fake = int(os.environ['FAKE_SLURM_MANAGING_TASKS']) if should_fake: self.is_slurm_managing_tasks = True except Exception as e: pass def set_nvidia_flags(self, is_slurm_managing_tasks, data_parallel_device_ids): if data_parallel_device_ids is None: return # set the correct cuda visible devices (using pci order) os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" # when slurm is managing the task it sets the visible devices if not is_slurm_managing_tasks: if isinstance(data_parallel_device_ids, int): id_str = ','.join(str(x) for x in list(range(data_parallel_device_ids))) os.environ["CUDA_VISIBLE_DEVICES"] = id_str else: gpu_str = ','.join([str(x) for x in data_parallel_device_ids]) os.environ["CUDA_VISIBLE_DEVICES"] = gpu_str log.info(f'VISIBLE GPUS: {os.environ["CUDA_VISIBLE_DEVICES"]}') def ddp_train(self, gpu_idx, model): """ Entry point into a DP thread :param gpu_idx: :param model: :param cluster_obj: :return: """ # node rank using relative slurm id # otherwise default to node rank 0 try: node_id = os.environ['SLURM_NODEID'] self.node_rank = int(node_id) except Exception: self.node_rank = 0 # show progressbar only on progress_rank 0 self.show_progress_bar = self.show_progress_bar and self.node_rank == 0 and gpu_idx == 0 # determine which process we are and world size if self.use_ddp: self.proc_rank = self.node_rank * self.num_gpus + gpu_idx self.world_size = self.num_gpu_nodes * self.num_gpus elif self.use_ddp2: self.proc_rank = self.node_rank self.world_size = self.num_gpu_nodes # let the exp know the rank to avoid overwriting logs if self.logger is not None: self.logger.rank = self.proc_rank # set up server using proc 0's ip address # try to init for 20 times at max in case ports are taken # where to store ip_table model.trainer = self model.init_ddp_connection(self.proc_rank, self.world_size) # CHOOSE OPTIMIZER # allow for lr schedulers as well self.optimizers, self.lr_schedulers = self.init_optimizers(model.configure_optimizers()) # MODEL # copy model to each gpu if self.distributed_backend == 'ddp': torch.cuda.set_device(gpu_idx) model.cuda(gpu_idx) # set model properties before going into wrapper self.copy_trainer_model_properties(model) # override root GPU self.root_gpu = gpu_idx # AMP # run through amp wrapper before going to distributed DP if self.use_amp: # An example model, optimizers = model.configure_apex(amp, model, self.optimizers, self.amp_level) self.optimizers = optimizers # DDP2 uses all GPUs on the machine if self.distributed_backend == 'ddp': device_ids = [gpu_idx] elif self.use_ddp2: device_ids = self.data_parallel_device_ids else: device_ids = None # allow user to configure ddp model = model.configure_ddp(model, device_ids) # continue training routine self.run_pretrain_routine(model) # when ddp ends, we save the model self.save_spawn_weights(model) def save_spawn_weights(self, model): """ Dump a temporary checkpoint after ddp ends to get weights out of the process :param model: :return: """ if self.proc_rank == 0: path = os.path.join(self.default_save_path, '__temp_weight_ddp_end.ckpt') self.save_checkpoint(path) def load_spawn_weights(self, original_model): """ Load the temp weights saved in the process To recover the trained model from the ddp process we load the saved weights :param model: :return: """ # load weights saved in ddp path = os.path.join(self.default_save_path, '__temp_weight_ddp_end.ckpt') loaded_model = original_model.__class__.load_from_checkpoint(path) # copy loaded weights to old model original_model.load_state_dict(loaded_model.state_dict()) # remove ddp weights os.remove(path) return loaded_model def resolve_root_node_address(self, root_node): if '[' in root_node: name = root_node.split('[')[0] number = root_node.split(',')[0] if '-' in number: number = number.split('-')[0] number = re.sub('[^0-9]', '', number) root_node = name + number return root_node