""" Runs a model on a single node across N-gpus. """ import os from argparse import ArgumentParser import numpy as np import torch import pytorch_lightning as pl from pl_examples.basic_examples.lightning_module_template import LightningTemplateModel SEED = 2334 torch.manual_seed(SEED) np.random.seed(SEED) def main(hparams): """ Main training routine specific for this project :param hparams: """ # ------------------------ # 1 INIT LIGHTNING MODEL # ------------------------ model = LightningTemplateModel(hparams) # ------------------------ # 2 INIT TRAINER # ------------------------ trainer = pl.Trainer( max_epochs=hparams.epochs, gpus=hparams.gpus, distributed_backend=hparams.distributed_backend, use_amp=hparams.use_16bit ) # ------------------------ # 3 START TRAINING # ------------------------ trainer.fit(model) if __name__ == '__main__': # ------------------------ # TRAINING ARGUMENTS # ------------------------ # these are project-wide arguments root_dir = os.path.dirname(os.path.realpath(__file__)) parent_parser = ArgumentParser(add_help=False) # gpu args parent_parser.add_argument( '--gpus', type=int, default=2, help='how many gpus' ) parent_parser.add_argument( '--distributed_backend', type=str, default='dp', help='supports three options dp, ddp, ddp2' ) parent_parser.add_argument( '--use_16bit', dest='use_16bit', action='store_true', help='if true uses 16 bit precision' ) # each LightningModule defines arguments relevant to it parser = LightningTemplateModel.add_model_specific_args(parent_parser, root_dir) hyperparams = parser.parse_args() # --------------------- # RUN TRAINING # --------------------- main(hyperparams)