from lightning.app.components.python import TracerPythonScript from lightning.app.storage.path import Path from lightning.app.utilities.tracer import Tracer from pytorch_lightning import Trainer class PLTracerPythonScript(TracerPythonScript): """This component can be used for ANY PyTorch Lightning script to track its progress and extract its best model path.""" def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) # Define the component state. self.global_step = None self.best_model_path = None def configure_tracer(self) -> Tracer: from pytorch_lightning.callbacks import Callback class MyInjectedCallback(Callback): def __init__(self, lightning_work): self.lightning_work = lightning_work def on_train_start(self, trainer, pl_module) -> None: print("This code doesn't belong to the script but was injected.") print("Even the Lightning Work is available and state transfer works !") print(self.lightning_work) def on_batch_train_end(self, trainer, *_) -> None: # On every batch end, collects some information. # This is communicated automatically to the rest of the app, # so you can track your training in real time in the Lightning App UI. self.lightning_work.global_step = trainer.global_step best_model_path = trainer.checkpoint_callback.best_model_path if best_model_path: self.lightning_work.best_model_path = Path(best_model_path) # This hook would be called every time # before a Trainer `__init__` method is called. def trainer_pre_fn(trainer, *args, **kwargs): kwargs["callbacks"] = kwargs.get("callbacks", []) + [MyInjectedCallback(self)] return {}, args, kwargs tracer = super().configure_tracer() tracer.add_traced(Trainer, "__init__", pre_fn=trainer_pre_fn) return tracer if __name__ == "__main__": comp = PLTracerPythonScript(Path(__file__).parent / "pl_script.py") res = comp.run()