# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from argparse import Namespace from distutils.version import LooseVersion from unittest import mock import pytest import torch import yaml from omegaconf import OmegaConf from tensorboard.backend.event_processing.event_accumulator import EventAccumulator from pytorch_lightning import Trainer from pytorch_lightning.loggers import TensorBoardLogger from tests.base import BoringModel, EvalModelTemplate @pytest.mark.skipif( LooseVersion(torch.__version__) < LooseVersion("1.5.0"), reason="Minimal PT version is set to 1.5", ) def test_tensorboard_hparams_reload(tmpdir): model = EvalModelTemplate() trainer = Trainer(max_epochs=1, default_root_dir=tmpdir) trainer.fit(model) folder_path = trainer.logger.log_dir # make sure yaml is there with open(os.path.join(folder_path, "hparams.yaml")) as file: # The FullLoader parameter handles the conversion from YAML # scalar values to Python the dictionary format yaml_params = yaml.safe_load(file) assert yaml_params["b1"] == 0.5 assert len(yaml_params.keys()) == 10 # verify artifacts assert len(os.listdir(os.path.join(folder_path, "checkpoints"))) == 1 # verify tb logs event_acc = EventAccumulator(folder_path) event_acc.Reload() data_pt_1_5 = b'\x12\x93\x01"\x0b\n\tdrop_prob"\x0c\n\nbatch_size"\r\n\x0bin_features"\x0f\n\rlearning_rate"' \ b'\x10\n\x0eoptimizer_name"\x0b\n\tdata_root"\x0e\n\x0cout_features"\x0c\n\nhidden_dim"' \ b'\x04\n\x02b1"\x04\n\x02b2*\r\n\x0b\x12\thp_metric' data_pt_1_6 = b'\x12\xa7\x01"\r\n\tdrop_prob \x03"\x0e\n\nbatch_size \x03"\x0f\n\x0bin_features \x03"' \ b'\x11\n\rlearning_rate \x03"\x12\n\x0eoptimizer_name \x01"\r\n\tdata_root \x01"' \ b'\x10\n\x0cout_features \x03"\x0e\n\nhidden_dim \x03"\x06\n\x02b1 \x03"' \ b'\x06\n\x02b2 \x03*\r\n\x0b\x12\thp_metric' hparams_data = data_pt_1_6 if LooseVersion(torch.__version__) >= LooseVersion("1.6.0") else data_pt_1_5 assert event_acc.summary_metadata['_hparams_/experiment'].plugin_data.plugin_name == 'hparams' assert event_acc.summary_metadata['_hparams_/experiment'].plugin_data.content == hparams_data def test_tensorboard_automatic_versioning(tmpdir): """Verify that automatic versioning works""" root_dir = tmpdir / "tb_versioning" root_dir.mkdir() (root_dir / "version_0").mkdir() (root_dir / "version_1").mkdir() logger = TensorBoardLogger(save_dir=tmpdir, name="tb_versioning") assert logger.version == 2 def test_tensorboard_manual_versioning(tmpdir): """Verify that manual versioning works""" root_dir = tmpdir / "tb_versioning" root_dir.mkdir() (root_dir / "version_0").mkdir() (root_dir / "version_1").mkdir() (root_dir / "version_2").mkdir() logger = TensorBoardLogger(save_dir=tmpdir, name="tb_versioning", version=1) assert logger.version == 1 def test_tensorboard_named_version(tmpdir): """Verify that manual versioning works for string versions, e.g. '2020-02-05-162402' """ name = "tb_versioning" (tmpdir / name).mkdir() expected_version = "2020-02-05-162402" logger = TensorBoardLogger(save_dir=tmpdir, name=name, version=expected_version) logger.log_hyperparams({"a": 1, "b": 2, 123: 3, 3.5: 4, 5j: 5}) # Force data to be written assert logger.version == expected_version assert os.listdir(tmpdir / name) == [expected_version] assert os.listdir(tmpdir / name / expected_version) @pytest.mark.parametrize("name", ["", None]) def test_tensorboard_no_name(tmpdir, name): """Verify that None or empty name works""" logger = TensorBoardLogger(save_dir=tmpdir, name=name) logger.log_hyperparams({"a": 1, "b": 2, 123: 3, 3.5: 4, 5j: 5}) # Force data to be written assert logger.root_dir == tmpdir assert os.listdir(tmpdir / "version_0") @pytest.mark.parametrize("step_idx", [10, None]) def test_tensorboard_log_metrics(tmpdir, step_idx): logger = TensorBoardLogger(tmpdir) metrics = { "float": 0.3, "int": 1, "FloatTensor": torch.tensor(0.1), "IntTensor": torch.tensor(1), } logger.log_metrics(metrics, step_idx) def test_tensorboard_log_hyperparams(tmpdir): logger = TensorBoardLogger(tmpdir) hparams = { "float": 0.3, "int": 1, "string": "abc", "bool": True, "dict": {"a": {"b": "c"}}, "list": [1, 2, 3], "namespace": Namespace(foo=Namespace(bar="buzz")), "layer": torch.nn.BatchNorm1d, } logger.log_hyperparams(hparams) def test_tensorboard_log_hparams_and_metrics(tmpdir): logger = TensorBoardLogger(tmpdir, default_hp_metric=False) hparams = { "float": 0.3, "int": 1, "string": "abc", "bool": True, "dict": {"a": {"b": "c"}}, "list": [1, 2, 3], "namespace": Namespace(foo=Namespace(bar="buzz")), "layer": torch.nn.BatchNorm1d, } metrics = {"abc": torch.tensor([0.54])} logger.log_hyperparams(hparams, metrics) def test_tensorboard_log_omegaconf_hparams_and_metrics(tmpdir): logger = TensorBoardLogger(tmpdir, default_hp_metric=False) hparams = { "float": 0.3, "int": 1, "string": "abc", "bool": True, "dict": {"a": {"b": "c"}}, "list": [1, 2, 3], # "namespace": Namespace(foo=Namespace(bar="buzz")), # "layer": torch.nn.BatchNorm1d, } hparams = OmegaConf.create(hparams) metrics = {"abc": torch.tensor([0.54])} logger.log_hyperparams(hparams, metrics) @pytest.mark.parametrize("example_input_array", [None, torch.rand(2, 28 * 28)]) def test_tensorboard_log_graph(tmpdir, example_input_array): """ test that log graph works with both model.example_input_array and if array is passed externaly """ model = EvalModelTemplate() if example_input_array is not None: model.example_input_array = None logger = TensorBoardLogger(tmpdir, log_graph=True) logger.log_graph(model, example_input_array) def test_tensorboard_log_graph_warning_no_example_input_array(tmpdir): """ test that log graph throws warning if model.example_input_array is None """ model = EvalModelTemplate() model.example_input_array = None logger = TensorBoardLogger(tmpdir, log_graph=True) with pytest.warns( UserWarning, match='Could not log computational graph since the `model.example_input_array`' ' attribute is not set or `input_array` was not given' ): logger.log_graph(model) @mock.patch('pytorch_lightning.loggers.TensorBoardLogger.log_metrics') @pytest.mark.parametrize('expected', [ ([5, 11, 17]), ]) def test_tensorboard_with_accummulated_gradients(mock_log_metrics, expected, tmpdir): """ Tests to ensure that tensorboard log properly when accumulated_gradients > 1 """ class TestModel(BoringModel): _count = 0 _indexes = [] def training_step(self, batch, batch_idx): output = self.layer(batch) loss = self.loss(batch, output) self.log('count', self._count, on_step=True, on_epoch=True) self.log('loss', loss, on_step=True, on_epoch=True) if self.trainer.logger_connector.should_update_logs: self._indexes.append(self._count) self._count += 1 return loss def validation_step(self, batch, batch_idx): output = self.layer(batch) loss = self.loss(batch, output) self.log('val_loss', loss, on_step=True, on_epoch=True) return loss def configure_optimizers(self): optimizer = torch.optim.SGD(self.layer.parameters(), lr=.001) lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1) return [optimizer], [lr_scheduler] model = TestModel() model.training_epoch_end = None model.validation_epoch_end = None logger_0 = TensorBoardLogger(tmpdir, default_hp_metric=False) accumulate_grad_batches = 2 trainer = Trainer( default_root_dir=tmpdir, limit_train_batches=12, limit_val_batches=12, max_epochs=3, gpus=0, accumulate_grad_batches=accumulate_grad_batches, logger=[logger_0], log_every_n_steps=3, ) trainer.fit(model) mock_count_epochs = [m[2]["step"] for m in mock_log_metrics.mock_calls if "count_epoch" in m[2]["metrics"]] assert mock_count_epochs == expected mock_count_steps = [m[2]["step"] for m in mock_log_metrics.mock_calls if "count_step" in m[2]["metrics"]] assert model._indexes == mock_count_steps