# Copyright The Lightning AI team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pytest from lightning_utilities import module_available from lightning.pytorch import LightningDataModule from lightning.pytorch.demos.boring_classes import BoringDataModule, BoringModel from lightning.pytorch.utilities.model_helpers import is_overridden def test_is_overridden(): # edge cases assert not is_overridden("whatever", None) with pytest.raises(ValueError, match="Expected a parent"): is_overridden("whatever", object()) model = BoringModel() assert not is_overridden("whatever", model) assert not is_overridden("whatever", model, parent=LightningDataModule) # normal usage assert is_overridden("training_step", model) datamodule = BoringDataModule() assert is_overridden("train_dataloader", datamodule) @pytest.mark.skipif( not module_available("lightning") or not module_available("pytorch_lightning"), reason="This test is ONLY relevant for the UNIFIED package", ) def test_mixed_imports_unified(): from lightning.pytorch.utilities.compile import _maybe_unwrap_optimized as new_unwrap from lightning.pytorch.utilities.model_helpers import is_overridden as new_is_overridden from pytorch_lightning.callbacks import EarlyStopping as OldEarlyStopping from pytorch_lightning.demos.boring_classes import BoringModel as OldBoringModel model = OldBoringModel() with pytest.raises(TypeError, match=r"`pytorch_lightning` object \(BoringModel\) to a `lightning.pytorch`"): new_unwrap(model) with pytest.raises(TypeError, match=r"`pytorch_lightning` object \(EarlyStopping\) to a `lightning.pytorch`"): new_is_overridden("on_fit_start", OldEarlyStopping("foo"))