# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pytest import torch import tests_pytorch.helpers.utils as tutils from pytorch_lightning import Trainer from pytorch_lightning.demos.boring_classes import BoringModel from pytorch_lightning.strategies import DDPStrategy from pytorch_lightning.utilities.imports import _TORCH_GREATER_EQUAL_1_12 from pytorch_lightning.utilities.seed import seed_everything from tests_pytorch.helpers.datamodules import ClassifDataModule from tests_pytorch.helpers.runif import RunIf from tests_pytorch.strategies.test_dp import CustomClassificationModelDP if _TORCH_GREATER_EQUAL_1_12: torch_test_assert_close = torch.testing.assert_close else: torch_test_assert_close = torch.testing.assert_allclose @pytest.mark.parametrize( "trainer_kwargs", ( pytest.param(dict(accelerator="gpu", devices=1), marks=RunIf(min_cuda_gpus=1)), pytest.param(dict(strategy="dp", accelerator="gpu", devices=2), marks=RunIf(min_cuda_gpus=2)), pytest.param(dict(strategy="ddp_spawn", accelerator="gpu", devices=2), marks=RunIf(min_cuda_gpus=2)), pytest.param(dict(accelerator="mps", devices=1), marks=RunIf(mps=True)), ), ) def test_evaluate(tmpdir, trainer_kwargs): tutils.set_random_main_port() seed_everything(1) dm = ClassifDataModule() model = CustomClassificationModelDP() trainer = Trainer( default_root_dir=tmpdir, max_epochs=2, limit_train_batches=10, limit_val_batches=10, **trainer_kwargs ) trainer.fit(model, datamodule=dm) assert "ckpt" in trainer.checkpoint_callback.best_model_path old_weights = model.layer_0.weight.clone().detach().cpu() trainer.validate(datamodule=dm) trainer.test(datamodule=dm) # make sure weights didn't change new_weights = model.layer_0.weight.clone().detach().cpu() torch_test_assert_close(old_weights, new_weights) def test_model_parallel_setup_called(tmpdir): class TestModel(BoringModel): def __init__(self): super().__init__() self.configure_sharded_model_called = False self.layer = None def configure_sharded_model(self): self.configure_sharded_model_called = True self.layer = torch.nn.Linear(32, 2) model = TestModel() trainer = Trainer(default_root_dir=tmpdir, limit_train_batches=2, limit_val_batches=2, max_epochs=1) trainer.fit(model) assert model.configure_sharded_model_called @pytest.mark.parametrize( ["strategy", "strategy_cls"], [("DDP", DDPStrategy), ("DDP_FIND_UNUSED_PARAMETERS_FALSE", DDPStrategy)] ) def test_strategy_str_passed_being_case_insensitive(strategy, strategy_cls): trainer = Trainer(strategy=strategy) assert isinstance(trainer.strategy, strategy_cls)