# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Any, Dict, Optional import torch from sklearn.datasets import make_classification, make_regression from sklearn.model_selection import train_test_split from torch.utils.data import DataLoader, random_split from torch.utils.data.distributed import DistributedSampler from pytorch_lightning.core.datamodule import LightningDataModule from tests.helpers.datasets import MNIST, SklearnDataset, TrialMNIST class TrialMNISTDataModule(LightningDataModule): def __init__(self, data_dir: str = "./"): super().__init__() self.data_dir = data_dir self.non_picklable = None self.checkpoint_state: Optional[str] = None def prepare_data(self): TrialMNIST(self.data_dir, train=True, download=True) TrialMNIST(self.data_dir, train=False, download=True) def setup(self, stage: Optional[str] = None): if stage == "fit" or stage is None: mnist_full = TrialMNIST(root=self.data_dir, train=True, num_samples=64, download=True) self.mnist_train, self.mnist_val = random_split(mnist_full, [128, 64]) self.dims = self.mnist_train[0][0].shape if stage == "test" or stage is None: self.mnist_test = TrialMNIST(root=self.data_dir, train=False, num_samples=64, download=True) self.dims = getattr(self, "dims", self.mnist_test[0][0].shape) self.non_picklable = lambda x: x**2 def train_dataloader(self): return DataLoader(self.mnist_train, batch_size=32) def val_dataloader(self): return DataLoader(self.mnist_val, batch_size=32) def test_dataloader(self): return DataLoader(self.mnist_test, batch_size=32) def on_save_checkpoint(self, checkpoint: Dict[str, Any]) -> None: checkpoint[self.__class__.__name__] = self.__class__.__name__ def on_load_checkpoint(self, checkpoint: Dict[str, Any]) -> None: self.checkpoint_state = checkpoint.get(self.__class__.__name__) class MNISTDataModule(LightningDataModule): def __init__(self, data_dir: str = "./", batch_size: int = 32, dist_sampler: bool = False) -> None: super().__init__() self.dist_sampler = dist_sampler self.data_dir = data_dir self.batch_size = batch_size # self.dims is returned when you call dm.size() # Setting default dims here because we know them. # Could optionally be assigned dynamically in dm.setup() self.dims = (1, 28, 28) def prepare_data(self): # download only MNIST(self.data_dir, train=True, download=True, normalize=(0.1307, 0.3081)) MNIST(self.data_dir, train=False, download=True, normalize=(0.1307, 0.3081)) def setup(self, stage: Optional[str] = None): # Assign train/val datasets for use in dataloaders # TODO: need to split using random_split once updated to torch >= 1.6 if stage == "fit" or stage is None: self.mnist_train = MNIST(self.data_dir, train=True, normalize=(0.1307, 0.3081)) # Assign test dataset for use in dataloader(s) if stage == "test" or stage is None: self.mnist_test = MNIST(self.data_dir, train=False, normalize=(0.1307, 0.3081)) def train_dataloader(self): dist_sampler = None if self.dist_sampler: dist_sampler = DistributedSampler(self.mnist_train, shuffle=False) return DataLoader( self.mnist_train, batch_size=self.batch_size, sampler=dist_sampler, shuffle=False, ) def test_dataloader(self): return DataLoader(self.mnist_test, batch_size=self.batch_size, shuffle=False) class SklearnDataModule(LightningDataModule): def __init__(self, sklearn_dataset, x_type, y_type, batch_size: int = 10): super().__init__() self.batch_size = batch_size self._x, self._y = sklearn_dataset self._split_data() self._x_type = x_type self._y_type = y_type def _split_data(self): self.x_train, self.x_test, self.y_train, self.y_test = \ train_test_split(self._x, self._y, test_size=0.20, random_state=42) self.x_train, self.x_valid, self.y_train, self.y_valid = \ train_test_split(self.x_train, self.y_train, test_size=0.40, random_state=42) def train_dataloader(self): return DataLoader( SklearnDataset(self.x_train, self.y_train, self._x_type, self._y_type), batch_size=self.batch_size ) def val_dataloader(self): return DataLoader( SklearnDataset(self.x_valid, self.y_valid, self._x_type, self._y_type), batch_size=self.batch_size ) def test_dataloader(self): return DataLoader( SklearnDataset(self.x_test, self.y_test, self._x_type, self._y_type), batch_size=self.batch_size ) @property def sample(self): return torch.tensor([self._x[0]], dtype=self._x_type) class ClassifDataModule(SklearnDataModule): def __init__(self, num_features=32, length=800, num_classes=3, batch_size=10): data = make_classification( n_samples=length, n_features=num_features, n_classes=num_classes, n_clusters_per_class=1, random_state=42 ) super().__init__(data, x_type=torch.float32, y_type=torch.long, batch_size=batch_size) class RegressDataModule(SklearnDataModule): def __init__(self, num_features=16, length=800, batch_size=10): x, y = make_regression(n_samples=length, n_features=num_features, random_state=42) y = [[v] for v in y] super().__init__((x, y), x_type=torch.float32, y_type=torch.float32, batch_size=batch_size)