# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Tuple import torch from pytorch_lightning.metrics.utils import _check_same_shape def _mean_relative_error_update(preds: torch.Tensor, target: torch.Tensor) -> Tuple[torch.Tensor, int]: _check_same_shape(preds, target) target_nz = target.clone() target_nz[target == 0] = 1 sum_rltv_error = torch.sum(torch.abs((preds - target) / target_nz)) n_obs = target.numel() return sum_rltv_error, n_obs def _mean_relative_error_compute(sum_rltv_error: torch.Tensor, n_obs: int) -> torch.Tensor: return sum_rltv_error / n_obs def mean_relative_error(preds: torch.Tensor, target: torch.Tensor) -> torch.Tensor: """ Computes mean relative error Args: pred: estimated labels target: ground truth labels Return: Tensor with mean relative error Example: >>> x = torch.tensor([0., 1, 2, 3]) >>> y = torch.tensor([0., 1, 2, 2]) >>> mean_relative_error(x, y) tensor(0.1250) """ sum_rltv_error, n_obs = _mean_relative_error_update(preds, target) return _mean_relative_error_compute(sum_rltv_error, n_obs)