# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Any, Optional import torch from pytorch_lightning.metrics.functional.confusion_matrix import _confusion_matrix_compute, _confusion_matrix_update from pytorch_lightning.metrics.metric import Metric class ConfusionMatrix(Metric): """ Computes the `confusion matrix `_. Works with binary, multiclass, and multilabel data. Accepts logits from a model output or integer class values in prediction. Works with multi-dimensional preds and target. Note: This metric produces a multi-dimensional output, so it can not be directly logged. Forward accepts - ``preds`` (float or long tensor): ``(N, ...)`` or ``(N, C, ...)`` where C is the number of classes - ``target`` (long tensor): ``(N, ...)`` If preds and target are the same shape and preds is a float tensor, we use the ``self.threshold`` argument. This is the case for binary and multi-label logits. If preds has an extra dimension as in the case of multi-class scores we perform an argmax on ``dim=1``. Args: num_classes: Number of classes in the dataset. normalize: Normalization mode for confusion matrix. Choose from - ``None``: no normalization (default) - ``'true'``: normalization over the targets (most commonly used) - ``'pred'``: normalization over the predictions - ``'all'``: normalization over the whole matrix threshold: Threshold value for binary or multi-label logits. default: 0.5 compute_on_step: Forward only calls ``update()`` and return None if this is set to False. default: True dist_sync_on_step: Synchronize metric state across processes at each ``forward()`` before returning the value at the step. default: False process_group: Specify the process group on which synchronization is called. default: None (which selects the entire world) Example: >>> from pytorch_lightning.metrics import ConfusionMatrix >>> target = torch.tensor([1, 1, 0, 0]) >>> preds = torch.tensor([0, 1, 0, 0]) >>> confmat = ConfusionMatrix(num_classes=2) >>> confmat(preds, target) tensor([[2., 0.], [1., 1.]]) """ def __init__( self, num_classes: int, normalize: Optional[str] = None, threshold: float = 0.5, compute_on_step: bool = True, dist_sync_on_step: bool = False, process_group: Optional[Any] = None, ): super().__init__( compute_on_step=compute_on_step, dist_sync_on_step=dist_sync_on_step, process_group=process_group, ) self.num_classes = num_classes self.normalize = normalize self.threshold = threshold allowed_normalize = ('true', 'pred', 'all', None) assert self.normalize in allowed_normalize, \ f"Argument average needs to one of the following: {allowed_normalize}" self.add_state("confmat", default=torch.zeros(num_classes, num_classes), dist_reduce_fx="sum") def update(self, preds: torch.Tensor, target: torch.Tensor): """ Update state with predictions and targets. Args: preds: Predictions from model target: Ground truth values """ confmat = _confusion_matrix_update(preds, target, self.num_classes, self.threshold) self.confmat += confmat def compute(self) -> torch.Tensor: """ Computes confusion matrix """ return _confusion_matrix_compute(self.confmat, self.normalize)