# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from distutils.version import LooseVersion from typing import Any, Callable, Optional import torch from pytorch_lightning.metrics.functional.auroc import _auroc_compute, _auroc_update from pytorch_lightning.metrics.metric import Metric from pytorch_lightning.utilities import rank_zero_warn class AUROC(Metric): r"""Compute Area Under the Receiver Operating Characteristic Curve (ROC AUC) `_. Works for both binary, multilabel and multiclass problems. In the case of multiclass, the values will be calculated based on a one-vs-the-rest approach. Forward accepts - ``preds`` (float tensor): ``(N, )`` (binary) or ``(N, C, ...)`` (multilabel/multiclass) where C is the number of classes - ``target`` (long tensor): ``(N, ...)`` or ``(N, C, ...)`` For non-binary input, if the ``preds`` and ``target`` tensor have the same size the input will be interpretated as multilabel and if ``preds`` have one dimension more than the ``target`` tensor the input will be interpretated as multiclass. Args: num_classes: integer with number of classes. Not nessesary to provide for binary problems. pos_label: integer determining the positive class. Default is ``None`` which for binary problem is translate to 1. For multiclass problems this argument should not be set as we iteratively change it in the range [0,num_classes-1] average: - ``'macro'`` computes metric for each class and uniformly averages them - ``'weighted'`` computes metric for each class and does a weighted-average, where each class is weighted by their support (accounts for class imbalance) - ``None`` computes and returns the metric per class max_fpr: If not ``None``, calculates standardized partial AUC over the range [0, max_fpr]. Should be a float between 0 and 1. compute_on_step: Forward only calls ``update()`` and return None if this is set to False. default: True dist_sync_on_step: Synchronize metric state across processes at each ``forward()`` before returning the value at the step. process_group: Specify the process group on which synchronization is called. default: None (which selects the entire world) dist_sync_fn: Callback that performs the allgather operation on the metric state. When ``None``, DDP will be used to perform the allgather Example (binary case): >>> preds = torch.tensor([0.13, 0.26, 0.08, 0.19, 0.34]) >>> target = torch.tensor([0, 0, 1, 1, 1]) >>> auroc = AUROC(pos_label=1) >>> auroc(preds, target) tensor(0.5000) Example (multiclass case): >>> preds = torch.tensor([[0.90, 0.05, 0.05], ... [0.05, 0.90, 0.05], ... [0.05, 0.05, 0.90], ... [0.85, 0.05, 0.10], ... [0.10, 0.10, 0.80]]) >>> target = torch.tensor([0, 1, 1, 2, 2]) >>> auroc = AUROC(num_classes=3) >>> auroc(preds, target) tensor(0.7778) """ def __init__( self, num_classes: Optional[int] = None, pos_label: Optional[int] = None, average: Optional[str] = 'macro', max_fpr: Optional[float] = None, compute_on_step: bool = True, dist_sync_on_step: bool = False, process_group: Optional[Any] = None, dist_sync_fn: Callable = None, ): super().__init__( compute_on_step=compute_on_step, dist_sync_on_step=dist_sync_on_step, process_group=process_group, dist_sync_fn=dist_sync_fn, ) self.num_classes = num_classes self.pos_label = pos_label self.average = average self.max_fpr = max_fpr allowed_average = (None, 'macro', 'weighted') if self.average not in allowed_average: raise ValueError( f'Argument `average` expected to be one of the following: {allowed_average} but got {average}' ) if self.max_fpr is not None: if (not isinstance(max_fpr, float) and 0 < max_fpr <= 1): raise ValueError(f"`max_fpr` should be a float in range (0, 1], got: {max_fpr}") if LooseVersion(torch.__version__) < LooseVersion('1.6.0'): raise RuntimeError( '`max_fpr` argument requires `torch.bucketize` which is not available below PyTorch version 1.6' ) self.mode = None self.add_state("preds", default=[], dist_reduce_fx=None) self.add_state("target", default=[], dist_reduce_fx=None) rank_zero_warn( 'Metric `AUROC` will save all targets and predictions in buffer.' ' For large datasets this may lead to large memory footprint.' ) def update(self, preds: torch.Tensor, target: torch.Tensor): """ Update state with predictions and targets. Args: preds: Predictions from model (probabilities, or labels) target: Ground truth labels """ preds, target, mode = _auroc_update(preds, target) self.preds.append(preds) self.target.append(target) if self.mode is not None and self.mode != mode: raise ValueError( 'The mode of data (binary, multi-label, multi-class) should be constant, but changed' f' between batches from {self.mode} to {mode}' ) self.mode = mode def compute(self) -> torch.Tensor: """ Computes AUROC based on inputs passed in to ``update`` previously. """ preds = torch.cat(self.preds, dim=0) target = torch.cat(self.target, dim=0) return _auroc_compute( preds, target, self.mode, self.num_classes, self.pos_label, self.average, self.max_fpr, )