"""Test deprecated functionality which will be removed in vX.Y.Z""" import random import sys import pytest import torch from pytorch_lightning import Trainer from pytorch_lightning.callbacks import GpuUsageLogger, LearningRateLogger from tests.base import EvalModelTemplate def _soft_unimport_module(str_module): # once the module is imported e.g with parsing with pytest it lives in memory if str_module in sys.modules: del sys.modules[str_module] def test_tbd_remove_in_v0_11_0_trainer(): with pytest.deprecated_call(match='will be removed in v0.11.0'): lr_logger = LearningRateLogger() @pytest.mark.skipif(not torch.cuda.is_available(), reason="test requires GPU machine") def test_tbd_remove_in_v0_11_0_trainer_gpu(): with pytest.deprecated_call(match='will be removed in v0.11.0'): gpu_usage = GpuUsageLogger() def test_tbd_remove_in_v0_10_0_trainer(): rnd_val = random.random() with pytest.deprecated_call(match='will be removed in v0.10.0'): trainer = Trainer(overfit_pct=rnd_val) assert trainer.overfit_batches == rnd_val with pytest.deprecated_call(match='will be removed in v0.10.0'): assert trainer.overfit_pct == rnd_val rnd_val = random.random() with pytest.deprecated_call(match='will be removed in v0.10.0'): trainer = Trainer(train_percent_check=rnd_val) assert trainer.limit_train_batches == rnd_val with pytest.deprecated_call(match='v0.10.0'): assert trainer.train_percent_check == rnd_val rnd_val = random.random() with pytest.deprecated_call(match='will be removed in v0.10.0'): trainer = Trainer(val_percent_check=rnd_val) assert trainer.limit_val_batches == rnd_val with pytest.deprecated_call(match='will be removed in v0.10.0'): assert trainer.val_percent_check == rnd_val rnd_val = random.random() with pytest.deprecated_call(match='will be removed in v0.10.0'): trainer = Trainer(test_percent_check=rnd_val) assert trainer.limit_test_batches == rnd_val with pytest.deprecated_call(match='will be removed in v0.10.0'): assert trainer.test_percent_check == rnd_val trainer = Trainer() with pytest.deprecated_call(match='will be removed in v0.10.0'): trainer.proc_rank = 0 with pytest.deprecated_call(match='will be removed in v0.10.0'): assert trainer.proc_rank == trainer.global_rank with pytest.deprecated_call(match='will be removed in v0.10.0'): trainer.ckpt_path = 'foo' assert trainer.ckpt_path == trainer.weights_save_path == 'foo' class ModelVer0_6(EvalModelTemplate): # todo: this shall not be needed while evaluate asks for dataloader explicitly def val_dataloader(self): return self.dataloader(train=False) def validation_step(self, batch, batch_idx, *args, **kwargs): return {'val_loss': torch.tensor(0.6)} def validation_end(self, outputs): return {'val_loss': torch.tensor(0.6)} def test_dataloader(self): return self.dataloader(train=False) def test_end(self, outputs): return {'test_loss': torch.tensor(0.6)} class ModelVer0_7(EvalModelTemplate): # todo: this shall not be needed while evaluate asks for dataloader explicitly def val_dataloader(self): return self.dataloader(train=False) def validation_step(self, batch, batch_idx, *args, **kwargs): return {'val_loss': torch.tensor(0.7)} def validation_end(self, outputs): return {'val_loss': torch.tensor(0.7)} def test_dataloader(self): return self.dataloader(train=False) def test_end(self, outputs): return {'test_loss': torch.tensor(0.7)} # def test_tbd_remove_in_v1_0_0_model_hooks(): # # model = ModelVer0_6() # # with pytest.deprecated_call(match='will be removed in v1.0. Use `test_epoch_end` instead'): # trainer = Trainer(logger=False) # trainer.test(model) # assert trainer.callback_metrics == {'test_loss': torch.tensor(0.6)} # # with pytest.deprecated_call(match='will be removed in v1.0. Use `validation_epoch_end` instead'): # trainer = Trainer(logger=False) # # TODO: why `dataloder` is required if it is not used # result = trainer._evaluate(model, dataloaders=[[None]], max_batches=1) # assert result[0] == {'val_loss': torch.tensor(0.6)} # # model = ModelVer0_7() # # with pytest.deprecated_call(match='will be removed in v1.0. Use `test_epoch_end` instead'): # trainer = Trainer(logger=False) # trainer.test(model) # assert trainer.callback_metrics == {'test_loss': torch.tensor(0.7)} # # with pytest.deprecated_call(match='will be removed in v1.0. Use `validation_epoch_end` instead'): # trainer = Trainer(logger=False) # # TODO: why `dataloder` is required if it is not used # result = trainer._evaluate(model, dataloaders=[[None]], max_batches=1) # assert result[0] == {'val_loss': torch.tensor(0.7)}