import sys from pathlib import Path import pytest import torch import torch.distributed as dist import torch.multiprocessing as mp from pytorch_lightning import Trainer, seed_everything from pytorch_lightning.core.step_result import Result, TrainResult, EvalResult import tests.base.develop_utils as tutils from tests.base import EvalModelTemplate from tests.base.datamodules import TrialMNISTDataModule def _setup_ddp(rank, worldsize): import os os.environ["MASTER_ADDR"] = "localhost" # initialize the process group dist.init_process_group("gloo", rank=rank, world_size=worldsize) def _ddp_test_fn(rank, worldsize, result_cls: Result): _setup_ddp(rank, worldsize) tensor = torch.tensor([1.0]) res = result_cls() res.log("test_tensor", tensor, sync_dist=True, sync_dist_op=torch.distributed.ReduceOp.SUM) assert res["test_tensor"].item() == dist.get_world_size(), "Result-Log does not work properly with DDP and Tensors" @pytest.mark.parametrize("result_cls", [Result, TrainResult, EvalResult]) @pytest.mark.skipif(sys.platform == "win32", reason="DDP not available on windows") def test_result_reduce_ddp(result_cls): """Make sure result logging works with DDP""" tutils.reset_seed() tutils.set_random_master_port() worldsize = 2 mp.spawn(_ddp_test_fn, args=(worldsize, result_cls), nprocs=worldsize) @pytest.mark.parametrize( "test_option,do_train,gpus", [ pytest.param( 0, True, 0, id='full_loop' ), pytest.param( 0, False, 0, id='test_only' ), pytest.param( 1, False, 0, id='test_only_mismatching_tensor', marks=pytest.mark.xfail(raises=ValueError, match="Mism.*") ), pytest.param( 2, False, 0, id='mix_of_tensor_dims' ), pytest.param( 3, False, 0, id='string_list_predictions' ), pytest.param( 4, False, 0, id='int_list_predictions' ), pytest.param( 5, False, 0, id='nested_list_predictions' ), pytest.param( 6, False, 0, id='dict_list_predictions' ), pytest.param( 0, True, 1, id='full_loop_single_gpu', marks=pytest.mark.skipif(torch.cuda.device_count() < 1, reason="test requires single-GPU machine") ) ] ) def test_result_obj_predictions(tmpdir, test_option, do_train, gpus): tutils.reset_seed() dm = TrialMNISTDataModule(tmpdir) prediction_file = Path('predictions.pt') model = EvalModelTemplate() model.test_option = test_option model.prediction_file = prediction_file.as_posix() model.test_step = model.test_step_result_preds model.test_step_end = None model.test_epoch_end = None model.test_end = None if prediction_file.exists(): prediction_file.unlink() trainer = Trainer( default_root_dir=tmpdir, max_epochs=3, weights_summary=None, deterministic=True, gpus=gpus ) # Prediction file shouldn't exist yet because we haven't done anything assert not prediction_file.exists() if do_train: result = trainer.fit(model, dm) assert result == 1 result = trainer.test(datamodule=dm) result = result[0] assert result['test_loss'] < 0.6 assert result['test_acc'] > 0.8 else: result = trainer.test(model, datamodule=dm) # check prediction file now exists and is of expected length assert prediction_file.exists() predictions = torch.load(prediction_file) assert len(predictions) == len(dm.mnist_test) @pytest.mark.skipif(torch.cuda.device_count() < 2, reason="test requires multi-GPU machine") def test_result_obj_predictions_ddp_spawn(tmpdir): seed_everything(4321) distributed_backend = 'ddp_spawn' option = 0 import os os.environ['CUDA_VISIBLE_DEVICES'] = '0,1' dm = TrialMNISTDataModule(tmpdir) prediction_file = Path('predictions.pt') model = EvalModelTemplate(learning_rate=0.002) model.test_option = option model.prediction_file = prediction_file.as_posix() model.test_step = model.test_step_result_preds model.test_step_end = None model.test_epoch_end = None model.test_end = None prediction_files = [Path('predictions_rank_0.pt'), Path('predictions_rank_1.pt')] for prediction_file in prediction_files: if prediction_file.exists(): prediction_file.unlink() trainer = Trainer( default_root_dir=tmpdir, max_epochs=3, weights_summary=None, deterministic=True, distributed_backend=distributed_backend, gpus=[0, 1] ) # Prediction file shouldn't exist yet because we haven't done anything # assert not model.prediction_file.exists() result = trainer.fit(model, dm) assert result == 1 result = trainer.test(datamodule=dm) result = result[0] assert result['test_loss'] < 0.6 assert result['test_acc'] > 0.8 dm.setup('test') # check prediction file now exists and is of expected length size = 0 for prediction_file in prediction_files: assert prediction_file.exists() predictions = torch.load(prediction_file) size += len(predictions) assert size == len(dm.mnist_test) def test_result_gather_stack(): """ Test that tensors get concatenated when they all have the same shape. """ outputs = [ {"foo": torch.zeros(4, 5)}, {"foo": torch.zeros(4, 5)}, {"foo": torch.zeros(4, 5)}, ] result = Result.gather(outputs) assert isinstance(result["foo"], torch.Tensor) assert list(result["foo"].shape) == [12, 5] def test_result_gather_concatenate(): """ Test that tensors get concatenated when they have varying size in first dimension. """ outputs = [ {"foo": torch.zeros(4, 5)}, {"foo": torch.zeros(8, 5)}, {"foo": torch.zeros(3, 5)}, ] result = Result.gather(outputs) assert isinstance(result["foo"], torch.Tensor) assert list(result["foo"].shape) == [15, 5] def test_result_gather_scalar(): """ Test that 0-dim tensors get gathered and stacked correctly. """ outputs = [ {"foo": torch.tensor(1)}, {"foo": torch.tensor(2)}, {"foo": torch.tensor(3)}, ] result = Result.gather(outputs) assert isinstance(result["foo"], torch.Tensor) assert list(result["foo"].shape) == [3] def test_result_gather_different_shapes(): """ Test that tensors of varying shape get gathered into a list. """ outputs = [ {"foo": torch.tensor(1)}, {"foo": torch.zeros(2, 3)}, {"foo": torch.zeros(1, 2, 3)}, ] result = Result.gather(outputs) expected = [torch.tensor(1), torch.zeros(2, 3), torch.zeros(1, 2, 3)] assert isinstance(result["foo"], list) assert all(torch.eq(r, e).all() for r, e in zip(result["foo"], expected)) def test_result_gather_mixed_types(): """ Test that a collection of mixed types gets gathered into a list. """ outputs = [ {"foo": 1.2}, {"foo": ["bar", None]}, {"foo": torch.tensor(1)}, ] result = Result.gather(outputs) expected = [1.2, ["bar", None], torch.tensor(1)] assert isinstance(result["foo"], list) assert result["foo"] == expected def test_result_retrieve_last_logged_item(): result = Result() result.log('a', 5., on_step=True, on_epoch=True) assert result['epoch_a'] == 5. assert result['step_a'] == 5. assert result['a'] == 5.